ﻻ يوجد ملخص باللغة العربية
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observables. The formalism is utilized to calculate the jet broadening event shape in a systematic fashion to next to leading logarithmic order. An operator definition of the factorized cross section as well as a closed form of the next-to leading log cross section are presented. The result agrees with the data to within errors.
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on
We employ the functional renormalization group approach formulated on the Schwinger-Keldysh contour to calculate real-time correlation functions in scalar field theories. We provide a detailed description of the formalism, discuss suitable truncation
These notes provide a concise introduction to important applications of the renormalization group (RG) in statistical physics. After reviewing the scaling approach and Ginzburg-Landau theory for critical phenomena, Wilsons momentum shell RG method is
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme -- this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a chall