ﻻ يوجد ملخص باللغة العربية
We propose localization measures in phase space of the ground state of bilayer quantum Hall (BLQH) systems at fractional filling factors $ u=2/lambda$, to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary $U(4)$-isospin $lambda$. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space $mathbb{G}^4_{2}=U(4)/[U(2)times U(2)]$ (a higher-dimensional generalization of the Haldanes 2-dimensional sphere $mathbb{S}^2=U(2)/[U(1)times U(1)]$). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e., as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrodinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.
We analyze the Hilbert space and ground state structure of bilayer quantum Hall (BLQH) systems at fractional filling factors $ u=2/lambda$ ($lambda$ odd) and we also study the large $SU(4)$ isospin-$lambda$ limit. The model Hamiltonian is an adaptati
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by $lambda$ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglem
The Hall-plateau width and the activation energy were measured in the bilayer quantum Hall state at filling factor u=2, 1 and 2/3, by changing the total electron density and the density ratio in the two quantum wells. Their behavior are remarkably d
We measured the magnetoresistance of bilayer quantum Hall (QH) effects at the fractional filling factor $ u =2/3$ by changing the total electron density and the density difference between two layers. Three different QH states were separated by two ty
Magnetotransport properties are investigated in the bilayer quantum Hall state at the total filling factor $ u=2$. We measured the activation energy elaborately as a function of the total electron density and the density difference between the two la