ﻻ يوجد ملخص باللغة العربية
We analyze the Hilbert space and ground state structure of bilayer quantum Hall (BLQH) systems at fractional filling factors $ u=2/lambda$ ($lambda$ odd) and we also study the large $SU(4)$ isospin-$lambda$ limit. The model Hamiltonian is an adaptation of the $ u=2$ case [Z.F. Ezawa {it et al.}, Phys. Rev. {B71} (2005) 125318] to the many-body situation (arbitrary $lambda$ flux quanta per electron). The semiclassical regime and quantum phase diagram (in terms of layer distance, Zeeeman, tunneling, etc, control parameters) is obtained by using previously introduced Grassmannian $mathbb{G}^4_{2}=U(4)/[U(2)times U(2)]$ coherent states as variational states. The existence of three quantum phases (spin, canted and ppin) is common to any $lambda$, but the phase transition points depend on $lambda$, and the instance $lambda=1$ is recovered as a particular case. We also analyze the quantum case through a numerical diagonalization of the Hamiltonian and compare with the mean-field results, which give a good approximation in the spin and ppin phases but not in the canted phase, where we detect exactly $lambda$ energy level crossings between the ground and first excited state for given values of the tunneling gap. An energy band structure at low and high interlayer tunneling (spin and ppin phases, respectively) also appears depending on angular momentum and layer population imbalance quantum numbers.
We propose localization measures in phase space of the ground state of bilayer quantum Hall (BLQH) systems at fractional filling factors $ u=2/lambda$, to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by $lambda$ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglem
The Hall-plateau width and the activation energy were measured in the bilayer quantum Hall state at filling factor u=2, 1 and 2/3, by changing the total electron density and the density ratio in the two quantum wells. Their behavior are remarkably d
Magnetotransport properties are investigated in the bilayer quantum Hall state at the total filling factor $ u=2$. We measured the activation energy elaborately as a function of the total electron density and the density difference between the two la
We have measured the Hall-plateau width and the activation energy of the bilayer quantum Hall (BLQH) states at the Landau-level filling factor $ u=1$ and 2 by tilting the sample and simultaneously changing the electron density in each quantum well. T