ﻻ يوجد ملخص باللغة العربية
In this paper, we suggest a framework to make use of mutual information as a regularization criterion to train Auto-Encoders (AEs). In the proposed framework, AEs are regularized by minimization of the mutual information between input and encoding variables of AEs during the training phase. In order to estimate the entropy of the encoding variables and the mutual information, we propose a non-parametric method. We also give an information theoretic view of Variational AEs (VAEs), which suggests that VAEs can be considered as parametric methods that estimate entropy. Experimental results show that the proposed non-parametric models have more degree of freedom in terms of representation learning of features drawn from complex distributions such as Mixture of Gaussians, compared to methods which estimate entropy using parametric approaches, such as Variational AEs.
We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which lea
It has been conjectured that the Fisher divergence is more robust to model uncertainty than the conventional Kullback-Leibler (KL) divergence. This motivates the design of a new class of robust generative auto-encoders (AE) referred to as Fisher auto
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances
X-radiography (X-ray imaging) is a widely used imaging technique in art investigation. It can provide information about the condition of a painting as well as insights into an artists techniques and working methods, often revealing hidden information
Certain biological neurons demonstrate a remarkable capability to optimally compress the history of sensory inputs while being maximally informative about the future. In this work, we investigate if the same can be said of artificial neurons in recur