ﻻ يوجد ملخص باللغة العربية
Cylindric skew Schur functions, a generalization of skew Schur functions, are closely related to the famous problem finding a combinatorial formula for the 3-point Gromov-Witten invariants of Grassmannian. In this paper, we prove cylindric Schur positivity of the cylindric skew Schur functions, conjectured by McNamara. We also show that all coefficients appearing in the expansion are the same as $3$-point Gromov-Witten invariants. We start discussing properties of affine Stanley symmetric functions for general affine permutations and $321$-avoiding affine permutations, and explain how these functions are related to cylindric skew Schur functions. We also provide an effective algorithm to compute the expansion of the cylindric skew Schur functions in terms of the cylindric Schur functions, and the expansion of affine Stanley symmetric functions in terms of affine Schur functions.
We prove Stanleys conjecture that, if delta_n is the staircase shape, then the skew Schur functions s_{delta_n / mu} are non-negative sums of Schur P-functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In p
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch
We provide a non-recursive, combinatorial classification of multiplicity-free skew Schur polynomials. These polynomials are $GL_n$, and $SL_n$, characters of the skew Schur modules. Our result extends work of H. Thomas--A. Yong, and C. Gutschwager, i
We apply down operators in the affine nilCoxeter algebra to yield explicit combinatorial expansions for certain families of non-commutative k-Schur functions. This yields a combinatorial interpretation for a new family of k-Littlewood-Richardson coefficients.
A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefiniteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenbergs work has continued to attract significant interest, incl