ترغب بنشر مسار تعليمي؟ اضغط هنا

Reddened, Redshifted, or Intrinsically Red? Understanding Near-Ultraviolet Colors of Type Ia Supernovae

119   0   0.0 ( 0 )
 نشر من قبل Peter Brown
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the intrinsic colors of Type Ia supernovae (SNe Ia) is important to their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultra-Violet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening (E(B-V)=0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening (E(B-V)=0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe we can forward model the effects of redshift and reddening and directly compare with the observed colors. We find that some SNe are consistent with reddene



قيم البحث

اقرأ أيضاً

We present space-based ultraviolet/optical photometry and spectroscopy with the Swift Ultra-Violet/Optical Telescope and Hubble Space Telescope, respectively, along with ground-based optical photometry and spectroscopy and near-infrared spectroscopy of supernova SN2017erp. The optical light curves and spectra are consistent with a normal Type Ia supernova (SN Ia). Compared to previous photometric samples in the near-ultraviolet (NUV), SN2017erp has colors similar to the NUV-red category after correcting for Milky Way and host dust reddening. We find the difference between SN2017erp and the NUV-blue SN2011fe is not consistent with dust reddening alone but is similar to the SALT color law, derived from rest-frame UV photometry of higher redshift SNe Ia. This chromatic difference is dominated by the intrinsic differences in the UV and only a small contribution from the expected dust reddening. Differentiating the two can have important consequences for determining cosmological distances with rest-frame UV photometry. This spectroscopic series is important for analyzing SNe Ia with intrinsically redder NUV colors. We also show model comparisons suggesting that metallicity could be the physical difference between NUV-blue and NUV-red SNe Ia, with emission peaks from reverse fluorescence near 3000 Angstroms implying a factor of ten higher metallicity in the upper layers of SN2017erp compared to SN~2011fe. Metallicity estimates are very model dependent however, and there are multiple effects in the UV. Further models and UV spectra of SNe Ia are needed to explore the diversity of SNe Ia which show seemingly independent differences in the near-UV peaks and mid-UV flux levels.
We compare ultraviolet (UV) and optical colors of a sample of 29 type Ia supernovae (SNe Ia) observed with the Swift satellites UltraViolet Optical Telescope (UVOT) with theoretical models of an asymmetric explosion viewed from different angles from Kasen & Plewa. This includes mid-UV (1600-2700 Angstroms; uvw2 and uvm2) and near-UV (2700-4000 Angstroms; uvw1 and u) filters. We find the observed colors to be much redder than the model predictions, and that these offsets are unlikely to be caused by dust reddening. We confirm previous results that high-velocity SNe Ia have red UV-optical colors. When correcting the colors for dust reddening by assuming a constant b-v color we find no correlation between the uvw1-v or u-v colors and the ejecta velocities for 25 SNe Ia with published velocities and/or spectra. When assuming an optical color-velocity relation, a correlation of 2 and 3.6 sigma is found for uvw1-v and u-v. However, we find that the correlation is driven by the reddening correction and can be reproduced with random colors which are corrected for reddening. The significance of a correlation between the UV colors and the velocity is thus dependent on the assumed slope of the optical color-velocity relation. After such a correction, the uvw1-v versus velocity slope is shallower than that predicted by the models and offset to redder colors. A significant scatter still remains in the uvw1-v colors including a large spread at low velocities. This demonstrates that the NUV-blue/red spread is not caused solely by the photospheric velocity. The uvm2-uvw1 colors also show a large dispersion which is uncorrelated with the velocity.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
We present ultraviolet line identifications of near maximum-light HST observations of SN 2011fe using synthetic spectra generated from both SYNOW and $texttt{PHOENIX}$. We find the spectrum to be dominated by blends of iron group elements Fe, Co, and Ni (as expected due to heavy line blanketing by these elements in the UV) and for the first time identify lines from C IV and Si IV in a supernova spectrum. We also find that classical delayed detonation models of Type Ia supernovae are able to accurately reproduce the flux levels of SN 2011fe in the UV. Further analysis reveals that photionization edges play an important role in feature formation in the far-UV, and that temperature variations in the outer layers of the ejecta significantly alter the Fe III/Fe II ratio producing large flux changes in the far-UV and velocity shifts in mid-UV features. SN 2011fe is the best observed core-normal SNe Ia, therefore analysis its of UV spectra shows the power of UV spectra in discriminating between different metalicities and progenitor scenarios of Type Ia supernovae, due to the fact that the UV probes the outermost layers of the Type Ia supernova, which are most sensitive to metalicity and progenitor variations.
Context. Observations of Type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully unders tood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions {lambda}(uNi), {lambda}(uTi), {lambda}(uSi) and {lambda}(uCa). Two of these span the Ca H&K {lambda}{lambda} 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. (1) The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 $pm$ 0.011 mag RMS. A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. (2) Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of lightcurve power. (3) The uCa flux further improves standardization, yielding a 0.086 $pm$ 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach {chi}$^2$/dof $sim$ 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا