ﻻ يوجد ملخص باللغة العربية
We prove that the order of an ordered group is an interval order if and only if it is a semiorder. Next, we prove that every semiorder is isomorphic to a collection $mathcal J$ of intervals of some totally ordered abelian group, these intervals being of the form $[x, x+ alpha[$ for some positive $alpha$. We describe ordered groups such that the ordering is a semiorder and we introduce threshold groups generalizing totally ordered groups. We show that the free group on finitely many generators and the Thompson group $mathbb F$ can be equipped with a compatible semiorder which is not a weak order. On another hand, a group introduced by Clifford cannot.
An interval $k$-graph is the intersection graph of a family $mathcal{I}$ of intervals of the real line partitioned into at most $k$ classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes.
Rabinovitch showed in 1978 that the interval orders having a representation consisting of only closed unit intervals have order dimension at most 3. This article shows that the same dimension bound applies to two other classes of posets: those having
In order theory, a rank function measures the vertical level of a poset element. It is an integer-valued function on a poset which increments with the covering relation, and is only available on a graded poset. Defining a vertical measure to an arbit
We investigate the relation between bifix codes and interval exchange transformations. We prove that the class of natural codings of regular interval echange transformations is closed under maximal bifix decoding.
We prove that a periodic orbit $P$ with coprime over-rotation pair is an over-twist periodic orbit iff the $P$-linear map has the over-rotation interval with left endpoint equal to the over-rotation number of $P$. We then show that this result fails