ﻻ يوجد ملخص باللغة العربية
In order theory, a rank function measures the vertical level of a poset element. It is an integer-valued function on a poset which increments with the covering relation, and is only available on a graded poset. Defining a vertical measure to an arbitrary finite poset can be accomplished by extending a rank function to be interval-valued. This establishes an order homomorphism from a base poset to a poset over real intervals, and a standard (canonical) specific interval rank function is available as an extreme case. Various ordering relations are available over intervals, and we begin in this paper by considering conjugate orders which partition the space of pairwise comparisons of order elements. For us, these elements are real intervals, and we consider the weak and subset interval orders as (near) conjugates. It is also natural to ask about interval rank functions applied reflexively on whatever poset of intervals we have chosen, and thereby a general iterative strategy for interval ranks. We explore the convergence properties of standard and conjugate interval ranks, and conclude with a discussion of the experimental mathematics needed to support this work.
We prove that the order of an ordered group is an interval order if and only if it is a semiorder. Next, we prove that every semiorder is isomorphic to a collection $mathcal J$ of intervals of some totally ordered abelian group, these intervals being
An $ntimes n$ matrix $M$ is called a textit{fooling-set matrix of size $n$} if its diagonal entries are nonzero and $M_{k,ell} M_{ell,k} = 0$ for every $k e ell$. Dietzfelbinger, Hromkovi{v{c}}, and Schnitger (1996) showed that $n le (mbox{rk} M)^2$,
For a (finite) partially ordered set (poset) $P$, we call a dominating set $D$ in the comparability graph of $P$, an order-sensitive dominating set in $P$ if either $xin D$ or else $a<x<b$ in $P$ for some $a,bin D$ for every element $x$ in $P$ which
The closed cone of flag vectors of Eulerian partially ordered sets is studied. It is completely determined up through rank seven. Half-Eulerian posets are defined. Certain limit posets of Billera and Hetyei are half-Eulerian; they give rise to extrem
An ntimes n matrix M is called a fooling-set matrix of size n, if its diagonal entries are nonzero, whereas for every k e ell we have M_{k,ell} M_{ell,k} = 0. Dietzfelbinger, Hromkoviv{c}, and Schnitger (1996) showed that n le (rk M)^2, regardless of