ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA and VLA observations of emission from the environment of Sgr A*

161   0   0.0 ( 0 )
 نشر من قبل Farhad Yusef-Zadeh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 44 and 226 GHz observations of the Galactic center within 20$$ of Sgr A*. Millimeter continuum emission at 226 GHz is detected from eight stars that have previously been identified at near-IR and radio wavelengths. We also detect a 5.8 mJy source at 226 GHz coincident with the magnetar SGR~J1745-29 located 2.39$$ SE of Sgr A* and identify a new 2.5$times1.5$ halo of mm emission centered on Sgr A*. The X-ray emission from this halo has been detected previously and is interpreted in terms of a radiatively inefficient accretion flow. The mm halo surrounds an EW linear feature which appears to arise from Sgr A* and coincides with the diffuse X-ray emission and a minimum in the near-IR extinction. We argue that the millimeter emission is produced by synchrotron emission from relativistic electrons in equipartition with a $sim 1.5$mG magnetic field. The origin of these is unclear but its coexistence with hot gas supports scenarios in which the gas is produced by the interaction of winds either from the fast moving S-stars, the photo-evaporation of low-mass YSO disks or by a jet-driven outflow from Sgr A*. The spatial anti-correlation of the X-ray, radio and mm emission from the halo and the low near-IR extinction provides compelling evidence for an outflow sweeping up the interstellar material, creating a dust cavity within 2$$ of Sgr A*. Finally, the radio and mm counterparts to eight near-IR identified stars within $sim$10arcs of Sgr A* provide accurate astrometry to determine the positional shift between the peak emission at 44 and 226 GHz.



قيم البحث

اقرأ أيضاً

We report linearly polarized continuum emission properties of Sgr A* at $sim$492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observation s of Ctextsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.6$pm$0.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at $sim$492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of $sim$158$^{circ}$$pm$3$^{circ}$. The fitted polarization percentage of Sgr A* during our observational period is 14%$pm$1.2%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9%$pm$0.9% polarization in position angle P.A. = 4.1$^{circ}$$pm$4.2$^{circ}$. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 167$^{circ}$$pm$7$^{circ}$ intrinsic polarization position angle and (-5.6$pm$0.7)$times$10$^{5}$ rotation measure, is 155$^{+9}_{-8}$, which is consistent with our new measurement of polarization position angle within 1$sigma$. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations.
Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.
Our aim is to characterize the polarized continuum emission properties including intensity, polarization position angle, and polarization percentage of Sgr A* at $sim$100 (3.0 mm), $sim$230 (1.3 mm), $sim$345 (0.87 mm), $sim$500 (0.6 mm), and $sim$70 0 GHz (0.43 mm). We report continuum emission properties of Sgr A* at the above frequency bands, based on the Atacama Large Millimeter Array (ALMA) observations. We measured flux densities of Sgr A* from ALMA single pointing and mosaic observations. We performed sinusoidal fittings to the observed (XX-YY)/I intensity ratios, to derive the polarization position angles and polarization percentages. We successfully detect polarized continuum emission from all observed frequency bands. We observed lower Stokes I intensity at $sim$700 GHz than that at $sim$500 GHz, which suggests that emission at $gtrsim$500 GHz is from optically thin part of a synchrotron emission spectrum. Both the Stokes I intensity and the polarization position angle at our highest observing frequency of $sim$700 GHz, may be varying with time. However, we do not yet detect variation in the polarization percentage at $>$500 GHz. The polarization percentage at $sim$700 GHz is likely lower than that at $sim$500 GHz. By comparing the $sim$500 GHz and $sim$700 GHz observations with the observations at lower frequency bands, we suggest that the intrinsic polarization position angle of Sgr A* is varying with time. This paper also reports the measurable polarization properties from the observed calibration quasars. The future simultaneous multi-frequency polarization observations are required for clarifying the time and frequency variation of polarization position angle and polarization percentage.
417 - T. An 2004
We present a spectrum of Sgr A* observed simultaneously on June 17, 2003 at wavelengths from 90 to 0.7 cm with the VLA. In the spectrum, we also include the measurements of Sgr A* observed on the same day with the GMRT at 49 cm, the SMA at 0.89 mm an d the Keck II at 3.8 $mu$m. The spectrum at the centimeter wavelengths suggests the presence of a break wavelength at 3.8 cm (8 GHz). The spectral index is alpha=0.43+-0.03 (propto nu(alpha}) at 3.8 cm and shorter wavelengths. The spectrum between 3.8 cm and 49 cm can be described by a power law with spectral index of alpha=0.10+-0.03$. We detected Sgr A* with 0.22+-0.06 Jy at 90 cm, suggesting a sharp decrease in flux density at the wavelengths longer than 49 cm. The best fit to the spectrum at the wavelengths longer than lambda_b appears to be consistent with free-free absorption by a screen of ionized gas with a turnover wavelength at nu(tau_ff}=1) = 100 cm (300 MHz). This turnover wavelength appears to be three times longer than that of 30 cm (1 GHz) as suggested by Davies et al. (1976) based on the observations in 1994 and 1995. Our analysis suggests that stellar winds from the massive stars near Sgr A* could modulate the flux density at the wavelengths longer than 30 cm (or frequencies below 1 GHz).
ALMA 870$mu$m continuum imaging has uncovered a population of blends of multiple dusty star-forming galaxies (DSFGs) in sources originally detected with the Herschel Space Observatory. However, their pairwise separations are much smaller that what is found by ALMA follow-up of other single-dish surveys or expected from theoretical simulations. Using ALMA and VLA, we have targeted three of these systems to confirm whether the multiple 870$mu$m continuum sources lie at the same redshift, successfully detecting $^{12}$CO($J = 3$-2) and $^{12}$CO($J = 1$-0) lines and being able to confirm that in the three cases all the multiple DSFGs are likely physically associated within the same structure. Therefore, we report the discovery of two new gas-rich dusty protocluster cores (HELAISS02, $z = 2.171 pm 0.004$; HXMM20, $z = 2.602 pm 0.002$). The third target is located in the well known COSMOS overdensity at $z = 2.51$ (named CL J1001+0220 in the literature), for which we do not find any new secure CO(1-0) detection, although some of its members show only tentative detections and require further confirmation. From the gas, dust, and stellar properties of the two new protocluster cores, we find very large molecular gas fractions yet low stellar masses, pushing the sources above the main sequence, while not enhancing their star formation efficiency. We suggest that the sources might be newly formed galaxies migrating to the main sequence. The properties of the three systems compared to each other and to field galaxies may suggest a different evolutionary stage between systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا