ﻻ يوجد ملخص باللغة العربية
Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.
In this work, we want to highlight the potential of lithium as a target for spin-dependent dark matter search in cryogenic experiments, with a special focus on the low-mass region of the parameter space. We operated a prototype detector module based
Traditional direct searches for dark matter, looking for nuclear recoils in deep underground detectors, are challenged by an almost complete loss of sensitivity for light dark matter particles. Consequently, there is a significant effort in the commu
We study the phenomenology and detection prospects of a sub-GeV Dirac dark matter candidate with resonantly enhanced annihilations via a dark photon mediator. The model evades cosmological constraints on light thermal particles in the early universe
We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar semiconductor which allows sensitivity to a broader range o
Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The