ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

124   0   0.0 ( 0 )
 نشر من قبل Ryan Lowe T.
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

قيم البحث

اقرأ أيضاً

154 - Shariq Iqbal , Fei Sha 2018
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in single-agent settings. We present an actor-critic algorithm that trains decentralized policies in multi-agent settin gs, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multi-agent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
Action and observation delays exist prevalently in the real-world cyber-physical systems which may pose challenges in reinforcement learning design. It is particularly an arduous task when handling multi-agent systems where the delay of one agent cou ld spread to other agents. To resolve this problem, this paper proposes a novel framework to deal with delays as well as the non-stationary training issue of multi-agent tasks with model-free deep reinforcement learning. We formally define the Delay-Aware Markov Game that incorporates the delays of all agents in the environment. To solve Delay-Aware Markov Games, we apply centralized training and decentralized execution that allows agents to use extra information to ease the non-stationarity issue of the multi-agent systems during training, without the need of a centralized controller during execution. Experiments are conducted in multi-agent particle environments including cooperative communication, cooperative navigation, and competitive experiments. We also test the proposed algorithm in traffic scenarios that require coordination of all autonomous vehicles to show the practical value of delay-awareness. Results show that the proposed delay-aware multi-agent reinforcement learning algorithm greatly alleviates the performance degradation introduced by delay. Codes and demo videos are available at: https://github.com/baimingc/delay-aware-MARL.
Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm, because the result of a multi-agent task strongly depends on the complex interactions among agents and t heir interactions with a stochastic and dynamic environment. We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept. For a cooperative and competitive environment, there are generally two groups of agents: cooperative-agents and competitive-agents. In the proposed algorithm, each agent updates its value function using its own action and the biased action information of other agents in the two groups. The biased joint action of cooperative agents is computed as the sum of their actual joint action and the imaginary cooperative joint action, by assuming all the cooperative agents jointly maximize the target agents value function. The biased joint action of competitive agents can be computed similarly. Each agent then updates its own value function using the biased action information, resulting in a biased value function and corresponding biased policy. Subsequently, the biased policy of each agent is inevitably subjected to recommend an action to cooperate and compete with other agents, thereby introducing more active interactions among agents and enhancing the MARL policy learning. We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments. Furthermore, the introduced biases gradually decrease as the training proceeds and the correction based on the imaginary assumption vanishes.
Both single-agent and multi-agent actor-critic algorithms are an important class of Reinforcement Learning algorithms. In this work, we propose three fully decentralized multi-agent natural actor-critic (MAN) algorithms. The agents objective is to co llectively learn a joint policy that maximizes the sum of averaged long-term returns of these agents. In the absence of a central controller, agents communicate the information to their neighbors via a time-varying communication network while preserving privacy. We prove the convergence of all the 3 MAN algorithms to a globally asymptotically stable point of the ODE corresponding to the actor update; these use linear function approximations. We use the Fisher information matrix to obtain the natural gradients. The Fisher information matrix captures the curvature of the Kullback-Leibler (KL) divergence between polices at successive iterates. We also show that the gradient of this KL divergence between policies of successive iterates is proportional to the objective functions gradient. Our MAN algorithms indeed use this emph{representation} of the objective functions gradient. Under certain conditions on the Fisher information matrix, we prove that at each iterate, the optimal value via MAN algorithms can be better than that of the multi-agent actor-critic (MAAC) algorithm using the standard gradients. To validate the usefulness of our proposed algorithms, we implement all the 3 MAN algorithms on a bi-lane traffic network to reduce the average network congestion. We observe an almost 25% reduction in the average congestion in 2 MAN algorithms; the average congestion in another MAN algorithm is on par with the MAAC algorithm. We also consider a generic 15 agent MARL; the performance of the MAN algorithms is again as good as the MAAC algorithm. We attribute the better performance of the MAN algorithms to their use of the above representation.
At present, attention mechanism has been widely applied to the fields of deep learning models. Structural models that based on attention mechanism can not only record the relationships between features position, but also can measure the importance of different features based on their weights. By establishing dynamically weighted parameters for choosing relevant and irrelevant features, the key information can be strengthened, and the irrelevant information can be weakened. Therefore, the efficiency of deep learning algorithms can be significantly elevated and improved. Although transformers have been performed very well in many fields including reinforcement learning, there are still many problems and applications can be solved and made with transformers within this area. MARL (known as Multi-Agent Reinforcement Learning) can be recognized as a set of independent agents trying to adapt and learn through their way to reach the goal. In order to emphasize the relationship between each MDP decision in a certain time period, we applied the hierarchical coding method and validated the effectiveness of this method. This paper proposed a hierarchical transformers MADDPG based on RNN which we call it Hierarchical RNNs-Based Transformers MADDPG(HRTMADDPG). It consists of a lower level encoder based on RNNs that encodes multiple step sizes in each time sequence, and it also consists of an upper sequence level encoder based on transformer for learning the correlations between multiple sequences so that we can capture the causal relationship between sub-time sequences and make HRTMADDPG more efficient.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا