ترغب بنشر مسار تعليمي؟ اضغط هنا

Threes Company: An additional non-transiting super-Earth in the bright HD 3167 system, and masses for all three planets

103   0   0.0 ( 0 )
 نشر من قبل Jessie Christiansen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02+/-0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (rho_b = 5.60+2.15-1.43 g/cm^3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho_c = 1.97+0.94-0.59 g/cm^3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90+/-0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the systems instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASA TESS mission.

قيم البحث

اقرأ أيضاً

We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital p eriod of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.
308 - Benjamin J. Wieder 2018
Enabled by recent advances in symmetry and electronic structure, researchers have observed signatures of unconventional threefold degeneracies in tungsten carbide, challenging a longstanding paradigm in nodal semimetals.
The multi-planetary system HD 106315 was recently found in K2 data . The planets have periods of $P_b sim9.55$ and $P_c sim 21.06,$days, and radii of $ r_b = 2.44 pm 0.17, $ and $r_c = 4.35 pm 0.23, $ $R_{oplus}$. The brightness of the host star (V=9 .0 mag) makes it an excellent target for transmission spectroscopy. However, to interpret transmission spectra it is crucial to measure the planetary masses. We obtained high precision radial velocities for HD~106315 to determine the mass of the two transiting planets discovered with Kepler K2. Our successful observation strategy was carefully tailored to mitigate the effect of stellar variability. We modelled the new radial velocity data together with the K2 transit photometry and a new ground-based partial transit of HD 106315c to derive system parameters. We estimate the mass of HD 106315b to be 12.6 $pm$ 3.2 $M_{oplus}$ and the density to be $4.7 pm 1.7, g,cm^{-3}$, while for HD 106315c we estimate a mass of 15.2 $pm$ 3.7 $M_{oplus}$ and a density of $1.01 pm 0.29, $g,cm$^{-3}$. Hence, despite planet c having a radius almost twice as large as planet b, their masses are consistent with one another. We conclude that HD 106315c has a thick hydrogen-helium gaseous envelope. A detailed investigation of HD 106315b using a planetary interior model constrains the core mass fraction to be 5-29%, and the water mass fraction to be 10-50%. An alternative, not considered by our model, is that HD 106315b is composed of a large rocky core with a thick H-He envelope. Transmission spectroscopy of these planets will give insight into their atmospheric compositions and also help constrain their core compositions.
We report the discovery of the 1.008-day, ultra-short period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright ($V=7.9$) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS , HARPS and CORALIE radial-velocities, we measure a precise mass of $8.8pm0.6$ $M_oplus$ for this $1.74 pm 0.05$ $R_oplus$ exoplanet, which provides enough information to constrain its bulk composition, which is similar to Earths but enriched in iron. The radius, mass and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial-velocities reveal an additional $4.78$-day signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c (TOI-141c), whose minimum mass of $19.95pm 1.4$ $M_oplus$ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an ultra-short period transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
We report the discovery of four super-Earth planets around HD 215152, with orbital periods of 5.76, 7.28, 10.86, and 25.2 d, and minimum masses of 1.8, 1.7, 2.8, and 2.9 M_Earth respectively. This discovery is based on 373 high-quality radial velocit y measurements taken by HARPS over 13 years. Given the low masses of the planets, the signal-to-noise ratio is not sufficient to constrain the planet eccentricities. However, a preliminary dynamical analysis suggests that eccentricities should be typically lower than about 0.03 for the system to remain stable. With two pairs of planets with a period ratio lower than 1.5, with short orbital periods, low masses, and low eccentricities, HD 215152 is similar to the very compact multi-planet systems found by Kepler, which is very rare in radial-velocity surveys. This discovery proves that these systems can be reached with the radial-velocity technique, but characterizing them requires a huge amount of observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا