ﻻ يوجد ملخص باللغة العربية
The aim of this article is to establish the specialization method on characteristic ideals for finitely generated torsion modules over a complete local normal domain R that is module-finite over $O[[x_1, ..., x_d]]$, where $O$ is the ring of integers of a finite extension of the field of p-adic integers $Q_p$. The specialization method is a technique that recovers the information on the characteristic ideal $char_R(M)$ from $char_{R/I}(M/IM)$, where I varies in a certain family of nonzero principal ideals of R. As applications, we prove Euler system bound over Cohen-Macaulay normal domains by combining the main results in an earlier article of the first named author and then we prove one of divisibilities of the Iwasawa main conjecture for two-variable Hida deformations generalizing the main theorem obtained in an article of the first named author.
We generalize a result of Galatius and Venkatesh which relates the graded module of cohomology of locally symmetric spaces to the graded homotopy ring of the derived Galois deformation rings, by removing certain assumptions, and in particular by allo
Let $k,pin mathbb{N}$ with $p$ prime and let $finmathbb{Z}[x_1,x_2]$ be a bivariate polynomial with degree $d$ and all coefficients of absolute value at most $p^k$. Suppose also that $f$ is variable separated, i.e., $f=g_1+g_2$ for $g_iinmathbb{Z}[x_
Let $mathcal{G}$ be a connected reductive almost simple group over the Witt ring $W(mathbb{F})$ for $mathbb{F}$ a finite field of characteristic $p$. Let $R$ and $R$ be complete noetherian local $W(mathbb{F})$ -algebras with residue field $mathbb{F}$
Let $k$ be a perfect field of characteristic $p geq 3$. We classify $p$-divisible groups over regular local rings of the form $W(k)[[t_1,...,t_r,u]]/(u^e+pb_{e-1}u^{e-1}+...+pb_1u+pb_0)$, where $b_0,...,b_{e-1}in W(k)[[t_1,...,t_r]]$ and $b_0$ is an
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater tha