ﻻ يوجد ملخص باللغة العربية
Let $k$ be a perfect field of characteristic $p geq 3$. We classify $p$-divisible groups over regular local rings of the form $W(k)[[t_1,...,t_r,u]]/(u^e+pb_{e-1}u^{e-1}+...+pb_1u+pb_0)$, where $b_0,...,b_{e-1}in W(k)[[t_1,...,t_r]]$ and $b_0$ is an invertible element. This classification was in the case $r = 0$ conjectured by Breuil and proved by Kisin.
A p-divisible group, or more generally an F-crystal, is said to be Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton polygon. Katz proved that Hodge-Newton reducible F-crystals admit a canonical filtration called
Let $p$ be a prime. Let $(R,ideal{m})$ be a regular local ring of mixed characteristic $(0,p)$ and absolute index of ramification $e$. We provide general criteria of when each abelian scheme over $Spec Rsetminus{ideal{m}}$ extends to an abelian schem
Let G be a profinite group which is topologically finitely generated, p a prime number and d an integer. We show that the functor from rigid analytic spaces over Q_p to sets, which associates to a rigid space Y the set of continuous d-dimensional pse
Let $k$ be an algebraically closed field of positive characteristic $p$. We first classify the $D$-truncations mod $p$ of Shimura $F$-crystals over $k$ and then we study stratifications defined by inner isomorphism classes of these $D$-truncations. T
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This sli