ﻻ يوجد ملخص باللغة العربية
We numerically study the interaction of a terahertz pulse with monolayer graphene. We observe that the electron momentum density is affected by the carrier-envelope phase (CEP) of the single- to few-cycle terahertz laser pulse that induces the electron dynamics. In particular, we see strong asymmetric electron momentum distributions for non-zero values of the CEP. We explain the origin of the asymmetry within the adiabatic-impulse model by finding conditions to reach minimal adiabatic gap between the valence band and the conduction band. We discuss how these conditions and the interference pattern, emanating from successive non-adiabatic transitions at this minimal gap, affect the electron momentum density and how they are modified by the CEP. This opens the door to control fundamental time-dependent electron dynamics in the tunneling regime in Dirac materials. Also, this control suggests a way to measure the CEP of a terahertz laser pulse when it interacts with condensed matter systems.
Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realisation of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a
We present transport measurements on high-mobility bilayer graphene fully encapsulated in hexagonal boron nitride. We show two terminal quantum Hall effect measurements which exhibit full symmetry broken Landau levels at low magnetic fields. From wea
We theoretically examine the effect of carrier-carrier scattering processes (electron-hole and electron-electron) on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphen
We develop a method to predict the existence of edge states in graphene ribbons for a large class of boundaries. This approach is based on the bulk-edge correspondence between the quantized value of the Zak phase Z(k), which is a Berry phase across a
The remarkable gapless and linear band structure of graphene opens up new carrier relaxation channels bridging the valence and the conduction band. These Auger scattering processes change the number of charge carriers and can give rise to a significa