ترغب بنشر مسار تعليمي؟ اضغط هنا

Attribute-Guided Face Generation Using Conditional CycleGAN

117   0   0.0 ( 0 )
 نشر من قبل Yongyi Lu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are interested in attribute-guided face generation: given a low-res face input image, an attribute vector that can be extracted from a high-res image (attribute image), our new method generates a high-res face image for the low-res input that satisfies the given attributes. To address this problem, we condition the CycleGAN and propose conditional CycleGAN, which is designed to 1) handle unpaired training data because the training low/high-res and high-res attribute images may not necessarily align with each other, and to 2) allow easy control of the appearance of the generated face via the input attributes. We demonstrate impressive results on the attribute-guided conditional CycleGAN, which can synthesize realistic face images with appearance easily controlled by user-supplied attributes (e.g., gender, makeup, hair color, eyeglasses). Using the attribute image as identity to produce the corresponding conditional vector and by incorporating a face verification network, the attribute-guided network becomes the identity-guided conditional CycleGAN which produces impressive and interesting results on identity transfer. We demonstrate three applications on identity-guided conditional CycleGAN: identity-preserving face superresolution, face swapping, and frontal face generation, which consistently show the advantage of our new method.



قيم البحث

اقرأ أيضاً

117 - Xiaohan Jin , Ye Qi , Shangxuan Wu 2017
Face-off is an interesting case of style transfer where the facial expressions and attributes of one person could be fully transformed to another face. We are interested in the unsupervised training process which only requires two sequences of unalig ned video frames from each person and learns what shared attributes to extract automatically. In this project, we explored various improvements for adversarial training (i.e. CycleGAN[Zhu et al., 2017]) to capture details in facial expressions and head poses and thus generate transformation videos of higher consistency and stability.
Recovering badly damaged face images is a useful yet challenging task, especially in extreme cases where the masked or damaged region is very large. One of the major challenges is the ability of the system to generalize on faces outside the training dataset. We propose to tackle this extreme inpainting task with a conditional Generative Adversarial Network (GAN) that utilizes structural information, such as edges, as a prior condition. Edge information can be obtained from the partially masked image and a structurally similar image or a hand drawing. In our proposed conditional GAN, we pass the conditional input in every layer of the encoder while maintaining consistency in the distributions between the learned weights and the incoming conditional input. We demonstrate the effectiveness of our method with badly damaged face examples.
Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there still lacks of control over the generation process in order to achieve semantic face editing. In addition, it remains very challenging to maintain other face information untouched while editing the target attributes. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache and hair color. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.
106 - Yang Song , Jingwen Zhu , Dawei Li 2018
Given an arbitrary face image and an arbitrary speech clip, the proposed work attempts to generating the talking face video with accurate lip synchronization while maintaining smooth transition of both lip and facial movement over the entire video cl ip. Existing works either do not consider temporal dependency on face images across different video frames thus easily yielding noticeable/abrupt facial and lip movement or are only limited to the generation of talking face video for a specific person thus lacking generalization capacity. We propose a novel conditional video generation network where the audio input is treated as a condition for the recurrent adversarial network such that temporal dependency is incorporated to realize smooth transition for the lip and facial movement. In addition, we deploy a multi-task adversarial training scheme in the context of video generation to improve both photo-realism and the accuracy for lip synchronization. Finally, based on the phoneme distribution information extracted from the audio clip, we develop a sample selection method that effectively reduces the size of the training dataset without sacrificing the quality of the generated video. Extensive experiments on both controlled and uncontrolled datasets demonstrate the superiority of the proposed approach in terms of visual quality, lip sync accuracy, and smooth transition of lip and facial movement, as compared to the state-of-the-art.
85 - Yi Wei , Zhe Gan , Wenbo Li 2020
We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction o f a mask-guided reconstruction loss, MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes, while preserving the attribute-irrelevant regions (e.g., hat, scarf for modification `To Bald). Further, a novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator. In addition, a multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution ($1024 times 1024$) face editing. Experiments on the CelebA benchmark show that the proposed method significantly outperforms prior state-of-the-art approaches in terms of both image quality and editing performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا