ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth-Optimal Portfolio Selection under CVaR Constraints

108   0   0.0 ( 0 )
 نشر من قبل Guy Uziel
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfolios of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.



قيم البحث

اقرأ أيضاً

The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
The paper predicts an Efficient Market Property for the equity market, where stocks, when denominated in units of the growth optimal portfolio (GP), have zero instantaneous expected returns. Well-diversified equity portfolios are shown to approximate the GP, which explains the well-observed good performance of equally weighted portfolios. The proposed hierarchically weighted index (HWI) is shown to be an even better proxy of the GP. It sets weights equal within industrial and geographical groupings of stocks. When using the HWI as proxy of the GP the Efficient Market Property cannot be easily rejected and appears to be very robust.
119 - Zongxia Liang , Yang Liu , Ming Ma 2021
We propose a general family of piecewise hyperbolic absolute risk aversion (PHARA) utility, including many non-standard utilities as examples. A typical application is the composition of an HARA preference and a piecewise linear payoff in hedge fund management. We derive a unified closed-form formula of the optimal portfolio, which is a four-term division. The formula has clear economic meanings, reflecting the behavior of risk aversion, risk seeking, loss aversion and first-order risk aversion. One main finding is that risk-taking behaviors are greatly increased by non-concavity and reduced by non-differentiability.
Fractional stochastic volatility models have been widely used to capture the non-Markovian structure revealed from financial time series of realized volatility. On the other hand, empirical studies have identified scales in stock price volatility: bo th fast-time scale on the order of days and slow-scale on the order of months. So, it is natural to study the portfolio optimization problem under the effects of dependence behavior which we will model by fractional Brownian motions with Hurst index $H$, and in the fast or slow regimes characterized by small parameters $eps$ or $delta$. For the slowly varying volatility with $H in (0,1)$, it was shown that the first order correction to the problem value contains two terms of order $delta^H$, one random component and one deterministic function of state processes, while for the fast varying case with $H > half$, the same form holds at order $eps^{1-H}$. This paper is dedicated to the remaining case of a fast-varying rough environment ($H < half$) which exhibits a different behavior. We show that, in the expansion, only one deterministic term of order $sqrt{eps}$ appears in the first order correction.
We extend the result of our earlier study [Angoshtari, Bayraktar, and Young; Optimal consumption under a habit-formation constraint, available at: arXiv:2012.02277, (2020)] to a market setup that includes a risky asset whose price process is a geomet ric Brownian motion. We formulate an infinite-horizon optimal investment and consumption problem, in which an individual forms a habit based on the exponentially weighted average of her past consumption rate, and in which she invests in a Black-Scholes market. The novelty of our model is in specifying habit formation through a constraint rather than the common approach via the objective function. Specifically, the individual is constrained to consume at a rate higher than a certain proportion $alpha$ of her consumption habit. Our habit-formation model allows for both addictive ($alpha=1$) and nonaddictive ($0<alpha<1$) habits. The optimal investment and consumption policies are derived explicitly in terms of the solution of a system of differential equations with free boundaries, which is analyzed in detail. If the wealth-to-habit ratio is below (resp. above) a critical level $x^*$, the individual consumes at (resp. above) the minimum rate and invests more (resp. less) aggressively in the risky asset. Numerical results show that the addictive habit formation requires significantly more wealth to support the same consumption rate compared to a moderately nonaddictive habit. Furthermore, an individual with a more addictive habit invests less in the risky asset compared to an individual with a less addictive habit but with the same wealth-to-habit ratio and risk aversion, which provides an explanation for the equity-premium puzzle.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا