ﻻ يوجد ملخص باللغة العربية
The high upper critical field and low anisotropy of iron-based superconductors make them being particularly attractive for high-field applications. However, the current carrying capability needs to be enhanced by overcoming the weak-link effect between misaligned grains inside wire and tape conductors. Here we demonstrate a high transport critical current density (Jc) reaching 1.5x10^5 A/cm^2 (Ic = 437 A) at 4.2 K and 10 T in Ba0.6K0.4Fe2As2 (Ba-122) tapes prepared by a combination of conventional powder-in-tube method and optimized hot-press technique. The transport Jc measured at 4.2 K under high magnetic fields of 27 T is still on the level of 5.5x10^4 A/cm^2, which is much higher than those of low-temperature superconductors. This is the first report of hot-pressed Ba-122 superconducting tapes and these Jc values are by far the highest ever reported for iron-based superconducting wires and tapes. These high-performance tapes exhibit high degree of c-axis texture of Ba-122 grains and low anisotropy of transport Jc, showing great potential for construction of high-field superconducting magnets.
Among the recently discovered Fe-based superconducting compounds, the (K,Ba)Fe2As2 phase is attracting large interest within the scientific community interested in conductor developments. In fact, after some years of development, critical current den
We demonstrate that Fe sheathed LaO0.9F0.1FeAs wires with Ti as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. Comparing to the common two-step vacuum quartz tube synthesis method, the PIT method is more convenient an
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K
We report dc transport and magnetization measurements of Jc in MgB2 wires fabricated by the powder-in-tube method, using commercial MgB2 powder with 5 %at Mg powder added as an additional source of magnesium, and stainless steel as sheath material. B
The effect of the quality of starting powders on the microstructure and superconducting properties of in-situ processed Fe-sheathed MgB2 tapes has been investigated. Three different types of commercial atomized spherical magnesium powder and two diff