ﻻ يوجد ملخص باللغة العربية
We show how to convert divergent series, which typically occur in many applications in physics, into rapidly convergent inverse factorial series. This can be interpreted physically as a novel resummation of perturbative series. Being convergent, these new series allow rigorous extrapolation from an asymptotic region with a large parameter, to the opposite region where the parameter is small. We illustrate the method with various physical examples, and discuss how these convergent series relate to standard methods such as Borel summation, and also how they incorporate the physical Stokes phenomenon. We comment on the relation of these results to Dysons physical argument for the divergence of perturbation theory. This approach also leads naturally to a wide class of relations between bosonic and fermionic partition functions, and Klein-Gordon and Dirac determinants.
Usually the asymptotic behavior for large orders of the perturbation theory is reached rather slowly. However, in the case of the N-component $phi^4$ model in D=4 dimensions one can find a special quantity that exhibits an extremely fast convergence
Extended particles are considered in terms of the fields on the Poincar{e} group. Dirac like wave equations for extended particles of any spin are defined on the various homogeneous spaces of the Poincar{e} group. Free fields of the spin 1/2 and 1 (D
Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models
An algebraic framework for quantization in presence of arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away of them. As an application we compute the C
We consider two different physical systems for which the basis of the Hilbert space can be parametrized by Young diagrams: free complex fermions and the phase model of strongly correlated bosons. Both systems have natural, well-known deformations par