ﻻ يوجد ملخص باللغة العربية
With applications to many disciplines, the traveling salesman problem (TSP) is a classical computer science optimization problem with applications to industrial engineering, theoretical computer science, bioinformatics, and several other disciplines. In recent years, there have been a plethora of novel approaches for approximate solutions ranging from simplistic greedy to cooperative distributed algorithms derived from artificial intelligence. In this paper, we perform an evaluation and analysis of cornerstone algorithms for the Euclidean TSP. We evaluate greedy, 2-opt, and genetic algorithms. We use several datasets as input for the algorithms including a small dataset, a mediumsized dataset representing cities in the United States, and a synthetic dataset consisting of 200 cities to test algorithm scalability. We discover that the greedy and 2-opt algorithms efficiently calculate solutions for smaller datasets. Genetic algorithm has the best performance for optimality for medium to large datasets, but generally have longer runtime. Our implementations is public available.
We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum
A new characterisation of Hamiltonian graphs using f-cutset matrix is proposed. A new exact polynomial time algorithm for the travelling salesman problem (TSP) based on this new characterisation is developed. We then define so called ordered weighted
One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as the Christofides algorithm.
Theory of computer calculations strongly depends on the nature of elements the computer is made of. Quantum interference allows to formulate the Shor factorization algorithm turned out to be more effective than any one written for classical computers
Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant on the well-known Christofides algorithm for the TSP, called the Best-of-Many Christofides algorithm. The algorithm involves sampling a spanni