ﻻ يوجد ملخص باللغة العربية
We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube. Using a variety of complementary techniques, namely density matrix renormalization group, exact diagonalization, Schwinger boson mean field theory, quantum Monte-Carlo and series expansion, we explore the parameter space of this model in the regime of all-antiferromagnetic exchange. In contrast to unfrustrated four-leg tubes we uncover a rich phase diagram. Apart from the Luttinger liquid fixed point in the limit of decoupled legs, this comprises several gapped ground states, namely a plaquette, an incommensurate, and an antiferromagnetic quasi spin-2 chain phase. The transitions between these phases are analyzed in terms of total energy and static structure factor calculations and are found to be of (weak) first order. Despite the absence of long range order in the quantum case, remarkable similarities to the classical phase diagram are uncovered, with the exception of the icommensurate regime, which is strongly renormalized by quantum fluctuations. In the limit of large leg exchange the tube exhibits a deconfinement cross-over from gapped magnon like excitations to spinons.
Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond-alternating nearest neighbor interactions i
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord
The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered rings is studied numerically using exact diagonalization technique up to 16 spins and using density matrix renormalization group method for larg
We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the density matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime, for moderate to large ring exch