ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical Algorithms for Best-K Identification in Multi-Armed Bandits

187   0   0.0 ( 0 )
 نشر من قبل Mingda Qiao
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Best-$K$ identification problem (Best-$K$-Arm), we are given $N$ stochastic bandit arms with unknown reward distributions. Our goal is to identify the $K$ arms with the largest means with high confidence, by drawing samples from the arms adaptively. This problem is motivated by various practical applications and has attracted considerable attention in the past decade. In this paper, we propose new practical algorithms for the Best-$K$-Arm problem, which have nearly optimal sample complexity bounds (matching the lower bound up to logarithmic factors) and outperform the state-of-the-art algorithms for the Best-$K$-Arm problem (even for $K=1$) in practice.



قيم البحث

اقرأ أيضاً

We propose a generalization of the best arm identification problem in stochastic multi-armed bandits (MAB) to the setting where every pull of an arm is associated with delayed feedback. The delay in feedback increases the effective sample complexity of standard algorithms, but can be offset if we have access to partial feedback received before a pull is completed. We propose a general framework to model the relationship between partial and delayed feedback, and as a special case we introduce efficient algorithms for settings where the partial feedback are biased or unbiased estimators of the delayed feedback. Additionally, we propose a novel extension of the algorithms to the parallel MAB setting where an agent can control a batch of arms. Our experiments in real-world settings, involving policy search and hyperparameter optimization in computational sustainability domains for fast charging of batteries and wildlife corridor construction, demonstrate that exploiting the structure of partial feedback can lead to significant improvements over baselines in both sequential and parallel MAB.
We consider the best-arm identification problem in multi-armed bandits, which focuses purely on exploration. A player is given a fixed budget to explore a finite set of arms, and the rewards of each arm are drawn independently from a fixed, unknown d istribution. The player aims to identify the arm with the largest expected reward. We propose a general framework to unify sequential elimination algorithms, where the arms are dismissed iteratively until a unique arm is left. Our analysis reveals a novel performance measure expressed in terms of the sampling mechanism and number of eliminated arms at each round. Based on this result, we develop an algorithm that divides the budget according to a nonlinear function of remaining arms at each round. We provide theoretical guarantees for the algorithm, characterizing the suitable nonlinearity for different problem environments described by the number of competitive arms. Matching the theoretical results, our experiments show that the nonlinear algorithm outperforms the state-of-the-art. We finally study the side-observation model, where pulling an arm reveals the rewards of its related arms, and we establish improved theoretical guarantees in the pure-exploration setting.
Identifying the best arm of a multi-armed bandit is a central problem in bandit optimization. We study a quantum computational version of this problem with coherent oracle access to states encoding the reward probabilities of each arm as quantum ampl itudes. Specifically, we show that we can find the best arm with fixed confidence using $tilde{O}bigl(sqrt{sum_{i=2}^nDelta^{smash{-2}}_i}bigr)$ quantum queries, where $Delta_{i}$ represents the difference between the mean reward of the best arm and the $i^text{th}$-best arm. This algorithm, based on variable-time amplitude amplification and estimation, gives a quadratic speedup compared to the best possible classical result. We also prove a matching quantum lower bound (up to poly-logarithmic factors).
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedb ack signal. Moreover, in each step, it can take a special action, called the $stop$ action, that ends the current episode. After the $stop$ action is taken, the learner collects a terminal reward, and observes the costs and terminal rewards associated with each step of the episode. The goal of the learner is to maximize its cumulative gain (i.e., the terminal reward minus costs) over all episodes by learning to choose the best sequence of actions based on the feedback. First, we define an {em oracle} benchmark, which sequentially selects the actions that maximize the expected immediate gain. Then, we propose our online learning algorithm, named {em FeedBack Adaptive Learning} (FeedBAL), and prove that its regret with respect to the benchmark is bounded with high probability and increases logarithmically in expectation. Moreover, the regret only has polynomial dependence on the number of steps, actions and states. eMAB can be used to model applications that involve humans in the loop, ranging from personalized medical screening to personalized web-based education, where sequences of actions are taken in each episode, and optimal behavior requires adapting the chosen actions based on the feedback.
This paper studies a new variant of the stochastic multi-armed bandits problem, where the learner has access to auxiliary information about the arms. The auxiliary information is correlated with the arm rewards, which we treat as control variates. In many applications, the arm rewards are a function of some exogenous values, whose mean value is known a priori from historical data and hence can be used as control variates. We use the control variates to obtain mean estimates with smaller variance and tighter confidence bounds. We then develop an algorithm named UCB-CV that uses improved estimates. We characterize the regret bounds in terms of the correlation between the rewards and control variates. The experiments on synthetic data validate the performance guarantees of our proposed algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا