ﻻ يوجد ملخص باللغة العربية
We present quasi-simultaneous radio (VLA) and X-ray ($Swift$) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9$-$342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright ($232 pm 4 mu$Jy at $10$ GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state ($19 pm 4 mu$Jy). The source then was undetected in radio (< $13 mu$Jy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence ($L_X = 10^{34-35}$ erg s$^{-1}$) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with $beta > 0.7$ (where $L_R propto L_X^{beta}$). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at $L_X < 10^{35}$ erg s$^{-1}$ than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
We report on two new quiescent {it XMM-Newton} observations (in addition to the earlier {it Swift}/XRT and {it XMM-Newton} coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9$-$342058. Its crust was heated during t
We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ~4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal compo
1RXS J180408.9-342058 is a transient neutron star low-mass X-ray binary that exhibited a bright accretion outburst in 2015. We present Nustar, Swift, and Chandra observations obtained around the peak of this outburst. The source was in a soft X-ray s
1RXS J180408.9--342058 is a low mass X-ray binary hosting a neutron star, which shows X-ray activity at very different mass-accretion regimes, from very faint to almost the Eddington luminosity. In this work, we present a comprehensive X-ray study of
We study the accretion/ejection processes (i.e. disc/jet coupling) in the neutron star X-ray binary Aquila X-1 via a multi-wavelength approach. We use in the radio band the publicly available VLA archive containing observations of the object between