ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk reflection and a possible disk wind during a soft X-ray state in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

394   0   0.0 ( 0 )
 نشر من قبل Nathalie Degenaar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

1RXS J180408.9-342058 is a transient neutron star low-mass X-ray binary that exhibited a bright accretion outburst in 2015. We present Nustar, Swift, and Chandra observations obtained around the peak of this outburst. The source was in a soft X-ray spectral state and displayed an X-ray luminosity of Lx~(2-3)E37 (D/5.8 kpc)^2 erg cm-2 (0.5-10 keV). The Nustar data reveal a broad Fe-K emission line that we model as relativistically broadened reflection to constrain the accretion geometry. We found that the accretion disk is viewed at an inclination of i~27-35 degrees and extended close to the neutron star, down to Rin~5-7.5 gravitational radii (~11-17 km). This inner disk radius suggests that the neutron star magnetic field strength is B<2E8 G. We find a narrow absorption line in the Chandra/HEG data at an energy of ~7.64 keV with a significance of ~4.8 sigma. This feature could correspond to blue-shifted Fe xxvi and arise from an accretion disk wind, which would imply an outflow velocity of v~0.086c (~25800 km s-1). However, this would be extreme for an X-ray binary and it is unclear if a disk wind should be visible at the low inclination angle that we infer from our reflection analysis. Finally, we discuss how the X-ray and optical properties of 1RXS J180408.9-342058 are consistent with a relatively small (Porb<3 hr) binary orbit.

قيم البحث

اقرأ أيضاً

141 - N.V. Gusinskaia 2017
We present quasi-simultaneous radio (VLA) and X-ray ($Swift$) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9$-$342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright ($232 pm 4 mu$Jy at $10$ GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state ($19 pm 4 mu$Jy). The source then was undetected in radio (< $13 mu$Jy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence ($L_X = 10^{34-35}$ erg s$^{-1}$) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with $beta > 0.7$ (where $L_R propto L_X^{beta}$). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at $L_X < 10^{35}$ erg s$^{-1}$ than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
We report on two new quiescent {it XMM-Newton} observations (in addition to the earlier {it Swift}/XRT and {it XMM-Newton} coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9$-$342058. Its crust was heated during t he $sim$4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from $sim$ 100 eV to $sim$73 eV from $sim$8 days to $sim$479 days after the end of its outburst. However, during the most recent observation, taken $sim$860 days after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing $sim$0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality {it XMM-Newton} data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9$-$342058. The origin of this component is not fully understood.
We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ~4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal compo nent. The thermal evolution showed a gradual X-ray luminosity decay from ~18 x 10^32 to ~4 x 10^32 (D/5.8 kpc)^2 erg s^{-1} between ~8 and ~379 d in quiescence, and the inferred neutron star surface temperature (for an observer at infinity; using a neutron star atmosphere model) decreased from ~100 to ~71 eV. This can be interpreted as cooling of an accretion-heated neutron star crust. Modelling the observed temperature curve (using NSCOOL) indicated that the source required ~1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crustal heating to explain its thermal evolution. Alternatively, the decay could also be modelled without the presence of deep crustal heating, only having a shallow heat source (again ~1.9 MeV per accreted nucleon was required). However, the XMM-Newton data statistically required an additional power-law component. This component contributed ~30 per cent of the total unabsorbed flux in 0.5-10 keV energy range. The physical origin of this component is unknown. One possibility is that it arises from low-level accretion. The presence of this component in the spectrum complicates our cooling crust interpretation because it might indicate that the smooth luminosity and temperature decay curves we observed may not be due to crust cooling but due to some other process.
We present the analysis of seven emph{Chandra} High Energy Transmission Grating Spectrometer and six simultaneous emph{RXTE} Proportional Counter Array observations of the persistent neutron star (NS) low-mass X-ray binary GX 13+1 on its normal and h orizontal branches. Across nearly 10 years, GX 13+1 is consistently found to be accreting at $50-70$% Eddington, and all observations exhibit multiple narrow, blueshifted absorption features, the signature of a disk wind, despite the association of normal and horizontal branches with jet activity. A single absorber with standard abundances cannot account for all seven major disk wind features, indicating that multiple absorption zones may be present. Two or three absorbers can produce all of the absorption features at their observed broadened widths and reveal that multiple kinematic components produce the accretion disk wind signature. Assuming the most ionized absorber reflects the physical conditions closest to the NS, we estimate a wind launching radius of $7times10^{10}$ cm, for an electron density of $10^{12}$ cm$^{-3}$. This is consistent with the Compton radius and also with a thermally driven wind. Because of the sources high Eddington fraction, radiation pressure likely facilitates the wind launching.
72 - J. M. Miller 2016
We present a spectral analysis of a brief Chandra/HETG observation of the neutron star low-mass X-ray binary GX~340+0. The high-resolution spectrum reveals evidence of ionized absorption in the Fe K band. The strongest feature, an absorption line at approximately 6.9 keV, is required at the 5 sigma level of confidence via an F-test. Photoionization modeling with XSTAR grids suggests that the line is the most prominent part of a disk wind with an apparent outflow speed of v = 0.04c. This interpretation is preferred at the 4 sigma level over a scenario in which the line is H-like Fe XXVI at a modest red-shift. The wind may achieve this speed owing to its relatively low ionization, enabling driving by radiation pressure on lines; in this sense, the wind in GX 340+0 may be the stellar-mass equivalent of the flows in broad absorption line quasars (BALQSOs). If the gas has a unity volume filling factor, the mass ouflow rate in the wind is over 10^-5 Msun/year, and the kinetic power is nearly 10^39 erg/s (or, 5-6 times the radiative Eddington limit for a neutron star). However, geometrical considerations - including a small volume filling factor and low covering factor - likely greatly reduce these values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا