ﻻ يوجد ملخص باللغة العربية
This is the second paper on semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding endpoints. The classical path, interpolating between this point and the classical vacuum, called flucton, plus systematic one- and two-loop corrections, has been calculated in the first paper cite{Escobar-Ruiz:2016aqv} for double-well potential and now extended for a number of quantum-mechanical problems (anharmonic oscillator, sine-Gordon potential). The method is based on systematic expansion in Feynman diagrams and thus can be extended to QFTs. We show that the loop expansion in QM reminds the leading log-approximations in QFT. In this sequel we present complete set of results obtained using this method in unified way. Alternatively, starting from the Schr{o}dinger equation we derive a {it generalized} Bloch equation which semiclassical-like, iterative solution generates the loop expansion. We re-derive two loop expansions for all three above potentials and now extend it to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. Asymmetric (tilted) double-well potential (non-degenerate minima) is also studied using the second method.
We develop a new semiclassical approach, which starts with the density matrix given by the Euclidean time path integral with fixed coinciding endpoints, and proceed by identifying classical (minimal Euclidean action) path, to be referred to as {it fl
We compute the quantum string entropy S_s(m, H) from the microscopic string density of states rho_s (m,H) of mass m in de Sitter space-time. We find for high m, a {bf new} phase transition at the critical string temperature T_s= (1/2 pi k_B)L c^2/alp
We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp
It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling con
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic