ﻻ يوجد ملخص باللغة العربية
It is generally argued that the solution to a stochastic PDE with multiplicative noise---such as $dot{u}=frac12 u+uxi$, where $xi$ denotes space-time white noise---routinely produces exceptionally-large peaks that are macroscopically multifractal. See, for example, Gibbon and Doering (2005), Gibbon and Titi (2005), and Zimmermann et al (2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (1989; 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as stretch factors. A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.
Let $xi$ denote space-time white noise, and consider the following stochastic partial differential equations: (i) $dot{u}=frac{1}{2} u + uxi$, started identically at one; and (ii) $dot{Z}=frac12 Z + xi$, started identically at zero. It is well kn
Let $mathscr{T}$ be the regularity structure associated with a given system of singular stochastic PDEs. The paracontrolled representation of the $sf Pi$ map provides a linear parametrization of the nonlinear space of admissible models $sf M=(g,Pi)$
We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bri
We consider a collection of Euclidean random balls in ${Bbb R}^d$ generated by a determinantal point process inducing interaction into the balls. We study this model at a macros-copic level obtained by a zooming-out and three different regimes --Gaus
Numerical methods for stochastic partial differential equations typically estimate moments of the solution from sampled paths. Instead, we shall directly target the deterministic equations satisfied by the first and second moments, as well as the cov