ﻻ يوجد ملخص باللغة العربية
Numerical methods for stochastic partial differential equations typically estimate moments of the solution from sampled paths. Instead, we shall directly target the deterministic equations satisfied by the first and second moments, as well as the covariance. In the first part, we focus on stochastic ordinary differential equations. For the canonical examples with additive noise (Ornstein-Uhlenbeck process) or multiplicative noise (geometric Brownian motion) we derive these deterministic equations in variational form and discuss their well-posedness in detail. Notably, the second moment equation in the multiplicative case is naturally posed on projective-injective tensor product spaces as trial-test spaces. We construct Petrov-Galerkin discretizations based on tensor product piecewise polynomials and analyze their stability and convergence in these natural norms. In the second part, we proceed with parabolic stochastic partial differential equations with affine multiplicative noise. We prove well-posedness of the deterministic variational problem for the second moment, improving an earlier result. We then propose conforming space-time Petrov-Galerkin discretizations, which we show to be stable and quasi-optimal. In both parts, the outcomes are illustrated by numerical examples.
Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to the geometry of the computational domain, they can provide h
The numerical approximation of solutions to stochastic partial differential equations with additive spatial white noise on bounded domains in $mathbb{R}^d$ is considered. The differential operator is given by the fractional power $L^beta$, $betain(0,
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o
In this paper we analyze and implement a second-order-in-time numerical scheme for the three-dimensional phase field crystal (PFC) equation. The numerical scheme was proposed in [46], with the unique solvability and unconditional energy stability est
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the drivi