ترغب بنشر مسار تعليمي؟ اضغط هنا

To tune or not to tune the number of trees in random forest?

220   0   0.0 ( 0 )
 نشر من قبل Philipp Probst
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

The number of trees T in the random forest (RF) algorithm for supervised learning has to be set by the user. It is controversial whether T should simply be set to the largest computationally manageable value or whether a smaller T may in some cases be better. While the principle underlying bagging is that more trees are better, in practice the classification error rate sometimes reaches a minimum before increasing again for increasing number of trees. The goal of this paper is four-fold: (i) providing theoretical results showing that the expected error rate may be a non-monotonous function of the number of trees and explaining under which circumstances this happens; (ii) providing theoretical results showing that such non-monotonous patterns cannot be observed for other performance measures such as the Brier score and the logarithmic loss (for classification) and the mean squared error (for regression); (iii) illustrating the extent of the problem through an application to a large number (n = 306) of datasets from the public database OpenML; (iv) finally arguing in favor of setting it to a computationally feasible large number, depending on convergence properties of the desired performance measure.



قيم البحث

اقرأ أيضاً

While most previous work has focused on different pretraining objectives and architectures for transfer learning, we ask how to best adapt the pretrained model to a given target task. We focus on the two most common forms of adaptation, feature extra ction (where the pretrained weights are frozen), and directly fine-tuning the pretrained model. Our empirical results across diverse NLP tasks with two state-of-the-art models show that the relative performance of fine-tuning vs. feature extraction depends on the similarity of the pretraining and target tasks. We explore possible explanations for this finding and provide a set of adaptation guidelines for the NLP practitioner.
Effective hyper-parameter tuning is essential to guarantee the performance that neural networks have come to be known for. In this work, a principled approach to choosing the learning rate is proposed for shallow feedforward neural networks. We assoc iate the learning rate with the gradient Lipschitz constant of the objective to be minimized while training. An upper bound on the mentioned constant is derived and a search algorithm, which always results in non-divergent traces, is proposed to exploit the derived bound. It is shown through simulations that the proposed search method significantly outperforms the existing tuning methods such as Tree Parzen Estimators (TPE). The proposed method is applied to three different existing applications: a) channel estimation in OFDM systems, b) prediction of the exchange currency rates and c) offset estimation in OFDM receivers, and it is shown to pick better learning rates than the existing methods using the same or lesser compute power.
306 - Hanyuan Hang , Xiaoyu Liu , 2019
We propose an algorithm named best-scored random forest for binary classification problems. The terminology best-scored means to select the one with the best empirical performance out of a certain number of purely random tree candidates as each singl e tree in the forest. In this way, the resulting forest can be more accurate than the original purely random forest. From the theoretical perspective, within the framework of regularized empirical risk minimization penalized on the number of splits, we establish almost optimal convergence rates for the proposed best-scored random trees under certain conditions which can be extended to the best-scored random forest. In addition, we present a counterexample to illustrate that in order to ensure the consistency of the forest, every dimension must have the chance to be split. In the numerical experiments, for the sake of efficiency, we employ an adaptive random splitting criterion. Comparative experiments with other state-of-art classification methods demonstrate the accuracy of our best-scored random forest.
In the evolutionary computation research community, the performance of most evolutionary algorithms (EAs) depends strongly on their implemented coordinate system. However, the commonly used coordinate system is fixed and not well suited for different function landscapes, EAs thus might not search efficiently. To overcome this shortcoming, in this paper we propose a framework, named ACoS, to adaptively tune the coordinate systems in EAs. In ACoS, an Eigen coordinate system is established by making use of the cumulative population distribution information, which can be obtained based on a covariance matrix adaptation strategy and an additional archiving mechanism. Since the population distribution information can reflect the features of the function landscape to some extent, EAs in the Eigen coordinate system have the capability to identify the modality of the function landscape. In addition, the Eigen coordinate system is coupled with the original coordinate system, and they are selected according to a probability vector. The probability vector aims to determine the selection ratio of each coordinate system for each individual, and is adaptively updated based on the collected information from the offspring. ACoS has been applied to two of the most popular EA paradigms, i.e., particle swarm optimization (PSO) and differential evolution (DE), for solving 30 test functions with 30 and 50 dimensions at the 2014 IEEE Congress on Evolutionary Computation. The experimental studies demonstrate its effectiveness.
Coarse-grained simulations are often employed to study the translocation of DNA through a nanopore. The majority of these studies investigate the translocation process in a relatively generic sense and do not endeavour to match any particular set of experimental conditions. In this manuscript, we use the concept of a Peclet number for translocation, $P_t$, to compare the drift-diffusion balance in a typical experiment vs a typical simulation. We find that the standard coarse-grained approach over-estimates diffusion effects by anywhere from a factor of 5 to 50 compared to experimental conditions using dsDNA. By defining a coarse-graining parameter, $lambda$, we are able to correct this and tune the simulations to replicate the experimental $P_t$ (for dsDNA and other scenarios). To show the effect that a particular $P_t$ can have on the dynamics of translocation, we perform simulations across a wide range of $P_t$ values for two different types of driving forces: a force applied in the pore and a pulling force applied to the end of the polymer. As $P_t$ brings the system from a diffusion dominated to a drift dominated regime, a variety of effects are observed including a non-monotonic dependence of the translocation time $tau$ on $P_t$ and a steep rise in the probability of translocating. Comparing the two force cases illustrates the impact of the crowding effects that occur on the trans side: a non-monotonic dependence of the width of the $tau$ distributions is obtained for the in-pore force but not for the pulling force.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا