ﻻ يوجد ملخص باللغة العربية
During the transition from the Asymptotic Giant Branch (AGB) to Planetary Nebulae (PN), the circumstellar geometry and morphology change dramatically. Another characteristic of this transition is the high mass loss rate, that can be partially explained by radiation pressure and a combination of various factors like the stellar pulsation, the dust grain condensation and opacity in the upper atmosphere. The magnetic field can also be one of the main ingredients that shapes the stellar upper atmosphere and envelope. Our main goal is to investigate for the first time the spatial distribution of the magnetic field in the envelope of IRC+10216. More generally we intend to determine the magnetic field strength in the circumstellar envelope (CSE) of C-rich evolved stars, compare this field with previous studies for O-rich stars, and constrain the variation of the magnetic field with r the distance to the stars center. We use spectropolarimetric observations of the Stokes V parameter, collected with Xpol on the IRAM-30m radiotelescope, observing the Zeeman effect in seven hyperfine components of the CN J = 1-0 line. We use Crutchers method to estimate the magnetic field. For C-rich evolved stars, we derive a magnetic field strength (B) between 1.6 and 14.2 mG while B is estimated to be 6 mG for the proto-PN (PPN) AFGL618, and an upper value of 8 mG is found for the PN NGC7027. These results are consistent with a decrease of B as 1/r in the environment of AGB objects, i.e., with the presence of a toroidal field. But this is not the case for PPN and PN stars. Our map of IRC+10216 suggests that the magnetic field is not homogeneously strong throughout or aligned with the envelope and that the morphology of the CN emission might have changed with time.
We have modeled the emission of H2O rotational lines from the extreme C-rich star IRC+10216. Our treatment of the excitation of H2O emissions takes into account the excitation of H2O both through collisions, and through the pumping of the nu2 and nu3
About 10% of hot stars host a fossil magnetic field on the pre-main sequence and main sequence. However, the first magnetic evolved hot stars have been discovered only recently. An observing program has been set up to find more such objects. This wil
The circumstellar ammonia (NH$_3$) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH$_3$ abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry. In
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular
Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are