ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly (111)-orientated BiFeO3 thin film deposited on La0.67Sr0.33MnO3 buffered Pt/TiO2/SiO2/Si (100) substrate

198   0   0.0 ( 0 )
 نشر من قبل Qingqing Ke
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiferroic BiFeO3 (BFO) thin film exhibiting desired ferroelectric and enhanced magnetic properties was grown on La0.67Sr0.33MnO3 (LSMO) buffered Pt/TiO2/SiO2/Si substrates by off-axis RF magnetic sputtering, where a highly (111)-oriented texture was obtained. The BFO/LSMO thin film exhibits excellent ferroelectric and dielectric behaviors (2Pr ~210.7 {mu}C/cm2, 2Ec~435 kV/cm, {epsilon}r ~116.8, and tan{delta} ~ 2.7% at 1 kHz), together with a long fatigue endurance up to 1010 switching cycles at amplitude of 300 kV/cm. An enhancement in magnetic behavior was also observed with Ms=89.5 emu/cm3, which is largely contributed from the magnetic layer of LSMO. The coexistence of ferroelectric and ferromagnetic properties in the double layered BFO/LSMO thin film makes it a promising candidate system for applications where the magnetoelectric behavior is required.



قيم البحث

اقرأ أيضاً

Growth of perovskite oxide thin films on Si in crystalline form has long been a critical obstacle for the integration of multifunctional oxides into Si-based technologies. In this study, we propose pulsed laser deposition of a crystalline SrTiO3 thin film on a Si using graphene substrate. The SrTiO3 thin film on graphene has a highly (00l)-oriented crystalline structure which results from the partial epitaxy. Moreover, graphene promotes a sharp interface by highly suppressing the chemical intermixing. The important role of graphene as a 2D substrate and diffusion barrier allows expansion of device applications based on functional complex oxides.
391 - S. Rai , M.K.Tiwari , G. S. Lodha 2005
We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Por osity in this layer increases with decrease in NiMnSb film thickness. These morphological changes of the ultra thin films are reflected in the interesting transport and magnetic properties of these films. On the other hand, there are no influences of compositional in-homogeneity and surface/interface roughness on the magnetic and transport properties of the films.
Strain engineering with different substrate facets is promising for tuning functional properties of thin film perovskite oxides. By choice of facet, different surface symmetries and chemical bond directions for epitaxial interfaces can be tailored. H ere, preparation of well-defined pseudo-cubic (111)-oriented orthorhombic substrates of DyScO3 , GdScO3 , and NdGaO3 is reported. The choice of orthorhombic facet, (011)o or (101)o , both corresponding to pseudo-cubic (111)pc , gives vicinal surfaces with single or double (111pc layer terrace step heights, respectively, impacting subsequent thin film growth. Orthorhombic LaFeO3 epitaxy on the (101)o facet reveals a distinction between alternating (111)pc layers, both during and after growth. The observed differences are explained based on the oxygen octahedral tilt pattern relative to the two orthorhombic (111)pc surfaces. This robust structural detail in the orthorhombic perovskite oxides enables utilisation of different (111)pc facets for property engineering, through polyhedral connectivity control and cation coordination at epitaxial interfaces.
239 - Yao Shuai , Xin Ou , Chuangui Wu 2012
BiFeO3 thin films have been deposited on Pt/sapphire and Pt/Ti/SiO2/Si substrates with pulsed laser deposition using the same growth conditions, respectively. Au was sputtered as the top electrode. The microscopic structure of the thin film varies by changing the underlying substrate. Thin films on Pt/sapphire are not resistively switchable due to the formation of Schottky contacts at both the top and the bottom interface. However, thin films on Pt/Ti/SiO2/Si exhibit an obvious resistive switching behavior under forward bias. The conduction mechanisms in BiFeO3 thin films on Pt/sapphire and Pt/Ti/SiO2/Si substrates are discussed to understand the different resistive switching behaviors.
BiFeO3 thin films with various thicknesses were grown epitaxially on (001) LaSrAlO4 single crystal substrates using pulsed laser deposition. High resolution x-ray diffraction measurements revealed that a tetragonal-like phase with c-lattice constant ~4.65 {AA} is stabilized by a large misfit strain. Besides, a rhombohedral-like phase with c-lattice constant ~3.99 {AA} was also detected at film thickness of ~50 nm and above to relieve large misfit strains. In-plane piezoelectric force microscopy studies showed clear signals and self-assembled nanoscale stripe domain structure for the tetragonal-like regions. These findings suggest a complex picture of nanoscale domain patterns in BiFeO3 thin films subjected to large compressive strains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا