ﻻ يوجد ملخص باللغة العربية
Recently it has been shown that the vacuum state in QED is infinitely degenerate. Moreover a transition among the degenerate vacua is induced in any nontrivial scattering process and determined from the associated soft factor. Conventional computations of scattering amplitudes in QED do not account for this vacuum degeneracy and therefore always give zero. This vanishing of all conventional QED amplitudes is usually attributed to infrared divergences. Here we show that if these vacuum transitions are properly accounted for, the resulting amplitudes are nonzero and infrared finite. Our construction of finite amplitudes is mathematically equivalent to, and amounts to a physical reinterpretation of, the 1970 construction of Faddeev and Kulish.
The issue intensively claimed in the literature on the generation of a CPT-odd and Lorentz violating Chern-Simons-like term by radiative corrections owing to a CPT violating interaction -- the axial coupling of fermions with a constant vector field $
In this paper, we investigate the behavior of non-commutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the non-planar diagrams will be examined in order
Stueckelberg mechanism introduces a scalar field, known as Stueckelberg field, so that gauge symmetry is preserved in the massive abelian gauge theory. In this work, we show that the role of the Stueckelberg field is similar to the Kulish and Faddeev
Loop corrections to observables in slow-roll inflation are found to diverge no worse than powers of the log of the scale factor, extending Weinbergs theorem to quasi-single field inflation models. Demanding perturbation theory be valid during primord
Implicit Regularization is a 4-dimensional regularization initially conceived to treat ultraviolet divergences. It has been successfully tested in several instances in the literature, more specifically in those where Dimensional Regularization does n