ترغب بنشر مسار تعليمي؟ اضغط هنا

Loop effects and infrared divergences in slow-roll inflation

138   0   0.0 ( 0 )
 نشر من قبل David A. Lowe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Loop corrections to observables in slow-roll inflation are found to diverge no worse than powers of the log of the scale factor, extending Weinbergs theorem to quasi-single field inflation models. Demanding perturbation theory be valid during primordial inflation leads to constraints on the effective lagrangian. This leads to some interesting constraints and coincidences on the landscape of inflationary vacua.



قيم البحث

اقرأ أيضاً

56 - Asuka Ito , Jiro Soda 2017
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space.
The recently introduced swampland criterion for de Sitter (arXiv:1806.08362) can be viewed as a (hierarchically large) bound on the smallness of the slow roll parameter $epsilon_V$. This leads us to consider the other slow roll parameter $eta_V$ more closely, and we are lead to conjecture that the bound is not necessarily on $epsilon_V$, but on slow roll itself. A natural refinement of the de Sitter swampland conjecture is therefore that slow roll is violated at ${cal O}(1)$ in Planck units in any UV complete theory. A corollary is that $epsilon_V$ need not necessarily be ${cal O}(1)$, if $eta_V lesssim -{cal O}(1)$ holds. We consider various tachyonic tree level constructions of de Sitter in IIA/IIB string theory (as well as closely related models of inflation), which superficially violate arXiv:1806.08362, and show that they are consistent with this refined version of the bound. The phrasing in terms of slow roll makes it plausible why bo
Brief periods of non-slow-roll evolution during inflation can produce interesting observable consequences, as primordial black holes, or an inflationary gravitational wave spectrum enhanced at small scales. We develop a model independent, analytic ap proach for studying the predictions of single-field scenarios which include short phases of slow-roll violation. Our method is based on Taylor expanding the equations for cosmological fluctuations in a small quantity, which parameterizes the duration of the non-slow-roll eras. The super-horizon spectrum of perturbations is described by few effective parameters, and is characterized by a pronounced dip followed by a rapid growth in its amplitude, as typically found in numerical and analytical studies. The dip position $k_{rm dip}/k_*$ and the maximal enhancement $Pi_{rm max}$ of the spectrum towards small scales are found to be related by the law $k_{rm dip}/k_*propto Pi_{rm max}^{-1/4}$, and we determine the proportionality constant. For a single epoch of slow-roll violation we confirm previous studies, finding that the steepest slope of the spectrum well after the dip has spectral index $n-1,=,4$. On the other hand, with multiple phases of slow-roll violation, the slope of the spectrum is generally enhanced. For example, when two epochs of slow-roll violation take place, separated by a phase of quasi-de Sitter expansion, we find that the spectral index can reach the value $n-1,=,8$. This phenomenon indicates that the slope of the spectrum keeps memory of the history of non-slow-roll phases occurred during inflation.
The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.
We investigate the chaotic inflationary model using the two-loop effective potential of a self-interacting scalar field theory in curved spacetime. We use the potential which contains a non-minimal scalar curvature coupling and a quartic scalar self- interaction. We analyze the Lyapunov stability of de Sitter solution and show the stability bound. Calculating the inflationary parameters, we systematically explore the spectral index $n_s$ and the tensor-to-scalar ratio $r$, with varying the four parameters, the scalar-curvature coupling $xi_0$, the scalar quartic coupling $lambda_0$, the renormalization scale $mu$ and the e-folding number $N$. It is found that the two-loop correction on $n_s$ is much larger than the leading-log correction, which has previously been studied. We show that the model is consistent with the observation by Planck with WMAP and a recent joint analysis of BICEP2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا