ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Photon Search in the Mass Range Between 1.5 and 3.4 GeV/$c^2$

83   0   0.0 ( 0 )
 نشر من قبل Yuping Guo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy $sqrt{s}$ = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. We examine the initial state radiation reactions $e^+e^-rightarrow e^+e^-gamma_{rm ISR}$ and $e^+e^-rightarrow mu^+mu^-gamma_{rm ISR}$ for this search, where the dark photon would appear as an enhancement in the invariant mass distribution of the leptonic pairs. We observe no obvious enhancement in the mass range between 1.5 and 3.4 GeV/$c^{2}$ and set a 90% confidence level upper limit on the mixing strength of the dark photon and the Standard Model photon. We obtain a competitive limit in the tested mass range.



قيم البحث

اقرأ أيضاً

The KLOE Experiment at the $phi$ factory DA$Phi$NE, has measured the cross section $sigma(e^+e^-topi^+pi^-gamma)$ using two different selection schemes: requiring the photon emission at small polar angle and detecting the photon at large polar angle in the calorimeter. Using a theoretical radiator function we extract the pion form factor and obtain the $pipi$ contribution to the anomalous magnetic moment of the muon. Results presented here come from the analysis of 240 pb^{-1} collected in 2002, with improved systematic uncertainty with respect to the published KLOE analysis. We also include an update of the previous analysis.
A parameterization of the $bar pp$ differential elastic scattering cross section in the beam momentum range from 2 to 16 GeV/c is proposed. The parameterization well describes the existing data including the observed diffraction pattern at four-momen tum transfer $|t|$ up to 1.5-2.0 GeV$^2$. It can be used for detailed calculations of the radiation load on the detectors being designed for the PANDA detector at the future FAIR facility in Darmstadt.
174 - J. Suzuki , T. Horie , Y. Inoue 2015
A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter $chi$ of $sim 6times 10^{-12}$ for the hidden photon mass $m_gamma = 3.1 pm 1.2$ eV.
92 - G. Angloher , P. Bauer , A. Bento 2016
Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such searches is on interactions with nuclei as provided e.g. by Weakly Interacting Massive Particles. However, there is a variety of dark-matter candidates favoring interactions with electrons rather than with nuclei. One example are dark photons, i.e., long-lived vector particles with a kinetic mixing to standard-model photons. In this work we present constraints on this kinetic mixing based on data from CRESST-II Phase 2 corresponding to an exposure before cuts of 52,kg-days. These constraints improve the existing ones for dark-photon masses between 0.3 and 0.7,keV/c$^2$.
96 - M. M. Rvachev , et al. 2004
We have studied the quasielastic 3He(e,ep)d reaction in perpendicular coplanar kinematics, with the energy and momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,ep)d cross section was measured for missing m omenta up to 1000 MeV/c, while the A_TL asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the measured cross section is described well by calculations that use a variational ground-state wave function of the 3He nucleus derived from a potential that includes three-body forces. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A_TL asymmetry displays characteristic features of broken factorization, and is described reasonably well by available models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا