ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quasielastic 3He(e,ep)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c

97   0   0.0 ( 0 )
 نشر من قبل Douglas Higinbotham
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the quasielastic 3He(e,ep)d reaction in perpendicular coplanar kinematics, with the energy and momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,ep)d cross section was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the measured cross section is described well by calculations that use a variational ground-state wave function of the 3He nucleus derived from a potential that includes three-body forces. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A_TL asymmetry displays characteristic features of broken factorization, and is described reasonably well by available models.

قيم البحث

اقرأ أيضاً

140 - K. G. Fissum 2004
The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O(e,ep) reaction in quasielastic, constant (q,w) kinematics at Q^2 ~ 0.8 (GeV/c)^2, q ~ 1 GeV/c, and w ~ 445 MeV. Use of a self-cali brating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Differential cross-section data for proton knockout were obtained for 0 < Emiss < 120 MeV and 0 < pmiss < 350 MeV/c. These results have been used to extract the ALT asymmetry and the RL, RT, RLT, and RL+TT effective response functions. Detailed comparisons of the data with Relativistic Distorted-Wave Impulse Approximation, Relativistic Optical-Model Eikonal Approximation, and Relativistic Multiple-Scattering Glauber Approximation calculations are made. The kinematic consistency of the 1p-shell normalization factors extracted from these data with respect to all available 16O(e,ep) data is examined. The Q2-dependence of the normalization factors is also discussed.
The interference response function f_LT (R_LT) of the D(e,ep)n reaction has been determined at squared four-momentum transfer Q^2 = 0.33 (GeV/c)^2 and for missing momenta up to p_miss= 0.29 (GeV/c). The results have been compared to calculations that reproduce f_LT quite well but overestimate the cross sections by 10 - 20% for missing momenta between 0.1 (GeV/c) and 0.2 (GeV/c) .
Proton recoil polarization was measured in the quasielastic 4He(e,ep)3H reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e p) reaction, c ontradicting a relativistic distorted-wave approximation, and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.
Quasielastic $^{12}$C$(e,ep)$ scattering was measured at space-like 4-momentum transfer squared $Q^2$~=~8, 9.4, 11.4, and 14.2 (GeV/c)$^2$, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measu red yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no $Q^2$ dependence, up to proton momenta of 8.5~GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured $Q^2$ scales in exclusive $(e,ep)$ reactions. These results impose strict constraints on models of color transparency for protons.
86 - J. J. Kelly , et al. 2005
We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q^2 = 1.0 (GeV/c)^2 in 10 bins of W across the Delta resonance. A total of 16 independent response fu nctions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV^(-1/2) at Q^2=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا