ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures

167   0   0.0 ( 0 )
 نشر من قبل Hua Yun Geng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogen-rich compounds are important for understanding the dissociation of dense molecular hydrogen, as well as searching for room temperature Bardeen-Cooper-Schrieffer (BCS) superconductors. A recent high pressure experiment reported the successful synthesis of novel insulating lithium polyhydrides when above 130 GPa. However, the results are in sharp contrast to previous theoretical prediction by PBE functional that around this pressure range all lithium polyhydrides (LiHn (n = 2-8)) should be metallic. In order to address this discrepancy, we perform unbiased structure search with first principles calculation by including the van der Waals interaction that was ignored in previous prediction to predict the high pressure stable structures of LiHn (n = 2-11, 13) up to 200 GPa. We reproduce the previously predicted structures, and further find novel compositions that adopt more stable structures. The van der Waals functional (vdW-DF) significantly alters the relative stability of lithium polyhydrides, and predicts that the stable stoichiometries for the ground-state should be LiH2 and LiH9 at 130-170 GPa, and LiH2, LiH8 and LiH10 at 180-200 GPa. Accurate electronic structure calculation with GW approximation indicates that LiH, LiH2, LiH7, and LiH9 are insulative up to at least 208 GPa, and all other lithium polyhydrides are metallic. The calculated vibron frequencies of these insulating phases are also in accordance with the experimental infrared (IR) data. This reconciliation with the experimental observation suggests that LiH2, LiH7, and LiH9 are the possible candidates for lithium polyhydrides synthesized in that experiment. Our results reinstate the credibility of density functional theory in description H-rich compounds, and demonstrate the importance of considering van der Waals interaction in this class of materials.



قيم البحث

اقرأ أيضاً

The complex structures and electronic properties of alkali metals and their alloys provide a natural laboratory for studying the interelectronic interactions of metals under compression. A recent theoretical study (J. Phys. Chem. Lett. 2019, 10, 3006 ) predicted an interesting pressure-induced decomposition-recombination behavior of the Na2K compound over a pressure range of 10 - 500 GPa. However, a subsequent experiment (Phys. Rev. B 2020, 101, 224108) reported the formation of NaK rather than Na2K at pressures above 5.9 GPa. To address this discordance, we study the chemical stability of different stoichiometries of NaxK (x = 1/4, 1/3, 1/2, 2/3, 3/4, 4/3, 3/2 and 1 - 4) by effective structure searching method combined with first-principles calculations. Na2K is calculated to be unstable at 5 - 35 GPa due to the decomposition reaction Na2K-> NaK + Na, coinciding well with the experiment. NaK undergoes a combination-decomposition-recombination process accompanied by an opposite charge-transfer behavior between Na and K with pressure. Besides NaK, two hitherto unknown compounds NaK3 and Na3K2 are uncovered. NaK3 is a typical metallic alloy, while Na3K2 is an electride with strong interstitial electron localization.
Recently, C. M. Pepin textit{et al.} [Science textbf{357}, 382 (2017)] reported the formation of several new iron polyhydrides FeH$_x$ at pressures in the megabar range, and spotted FeH$_5$, which forms above 130 GPa, as a potential high-tc supercon ductor, because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A.~Majumdar textit{et al.} [Phys. Rev. B textbf{96}, 201107 (2017)] and A.~G.~Kvashnin textit{et al.} [J. Phys. Chem. C textbf{122}, 4731 (2018)] based on {em ab initio} Migdal-Eliashberg theory seemed to independently confirm such a conjecture. We conversely find, on the same theoretical-numerical basis, that neither FeH$_5$ nor its precursor, FeH$_3$, shows any conventional superconductivity and explain why this is the case. We also show that superconductivity may be attained by transition-metal polyhydrides in the FeH$_3$ structure type by adding more electrons to partially fill one of the Fe--H hybrid bands (as, e.g., in NiH$_3$). Critical temperatures, however, will remain low because the $d$--metal bonding, and not the metallic hydrogen, dominates the behavior of electrons and phonons involved in the superconducting pairing in these compounds.
The appropriateness of including Hg among the transition metals has been debated for a long time. Although the synthesis of HgF$_{4}$ molecules in gas phase was reported before, the molecules show strong instabilities and dissociate. Therefore, the t ransition metal propensity of Hg remains an open question. Here, we propose that high pressure provides a controllable method for preparing unusual oxidation states of matter. Using an advanced structure search method based on first-principles electronic structure calculations, we predict that under high pressures, Hg can transfer the electrons in its outmost $d$ shell to F atoms, thereby acting as a transition metal. Oxidation of Hg to the +4 state yielded thermodynamically stable molecular crystals consisting of HgF$_{4}$ planar molecules, a typical geometry for $d^{8}$ metal centers.
We have performed a combined experimental and theoretical study of ethane and methane at high pressures up to 120 GPa at 300 K using x-ray diffraction and Raman spectroscopy and the USPEX ab-initio evolutionary structural search algorithm, respective ly. For ethane, we have determined the crystallization point, for room temperature, at 2.7 GPa and also the low pressure crystal structure (Phase A). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been identified, for the first time, at 13.6 GPa to a monoclinic phase B, the structure of which is solved based on a good agreement of the experimental results and theoretical predictions. For methane, our XRD measurements are in agreement with the previously reported high-pressure structures and EOS. We have determined the equations of state of ethane and methane, which provides a solid basis for the discussion of their relative stability at high pressures.
515 - Jian Sun 2012
The phase diagram and equation of state of dense nitrogen are of interest in understanding the fundamental physics and chemistry under extreme conditions, including planetary processes, and in discovering new materials. We predict several stable phas es of nitrogen at multi-TPa pressures, including a P4/nbm structure consisting of partially charged N2 pairs and N5 tetrahedra, which is stable in the range 2.5-6.8 TPa. This is followed by a modulated layered structure between 6.8 and 12.6 TPa, which also exhibits a significant charge transfer. The P4/nbm metallic nitrogen salt and the modulated structure are stable at high pressures and temperatures, and they exhibit strongly ionic features and charge density distortions, which is unexpected in an element under such extreme conditions and could represent a new class of nitrogen materials. The P-T phase diagram of nitrogen at TPa pressures is investigated using quasiharmonic phonon calculations and ab initio molecular dynamics simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا