ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

66   0   0.0 ( 0 )
 نشر من قبل Akhil Ajay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study band-to-band and intersubband characteristics of GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 microns. We compare the effect of doping the GaN sections with Si and Ge, and we discuss the variation of free-carrier screening with the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor, leading to lateral electron-hole separation. We report intersubband absorption covering 1.45 microns to 1.75 microns using Ge-doped quantum wells, with comparable performance to well-studied Si-doped planar heterostructures. We also report comparable intersubband absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing intersubband phenomena. In addition, we calculate the spectral shift of the intersubband absorption due to many body effects as a function of the doping concentration.

قيم البحث

اقرأ أيضاً

The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
Temperature dependence of intersubband transitions in AlN/GaN multiple quantum wells grown with molecular beam epitaxy is investigated both by absorption studies at different temperatures and modeling of conduction-band electrons. For the absorption study, the sample is heated in increments up to $400^circ$C. The self-consistent Schrodinger-Poisson modeling includes temperature effects of the band-gap and the influence of thermal expansion on the piezoelectric field. We find that the intersubband absorption energy decreases only by $sim 6$ meV at $400^circ$C relative to its room temperature value.
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters, and for power electronics.
60 - Guangnan Zhou 2017
Ge-on-Si structures with three different dopants (P, As and B) and those without intentional doping were grown and annealed. Several different materials characterization methods have been performed to characterize the Ge film quality. All samples hav e a smooth surface (roughness < 1.5 nm), and the Ge films are almost entirely relaxed. On the other hand, B doped Ge films have threading dislocations above 1 x 10^8 cm-2. While P and As doping can reduce the threading dislocation density to be less than 10^6 cm-2 without annealing. The interdiffusion of Si and Ge of different films have been investigated experimentally and theoretically. A quantitative model of Si-Ge interdiffusion under extrinsic conditions across the full x_Ge range and with the dislocation mediated diffusion term was established. The Kirkendall effect has been observed. The results are of technical significance for the structure, doping, and process design of Ge-on-Si based devices, especially for photonic applications.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا