ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the problem about finding out perfect powers in an alternating sum of consecutive cubes. More precisely, we completely solve the Diophantine equation $(x+1)^3 - (x+2)^3 + cdots - (x + 2d)^3 + (x + 2d + 1)^3 = z^p$, where $p$ is prime and $x,d,z$ are integers with $1 leq d leq 50$.
In this paper we determine the perfect powers that are sums of three fifth powers in an arithmetic progression. More precisely, we completely solve the Diophantine equation $$ (x-d)^5 + x^5 + (x + d)^5 = z^n,~ngeq 2, $$ where $d,x,z in mathbb{Z}$ and $d = 2^a5^b$ with $a,bgeq 0$.
We give an explicit form of Inghams Theorem on primes in the short intervals, and show that there is at least one prime between every two consecutive cubes $xsp{3}$ and $(x+1)sp{3}$ if $loglog xge 15$.
We solve Diophantine equations of the type $ , a , (x^3 + y^3 + z^3 ) = (x + y + z)^3$, where $x,y,z$ are integer variables, and the coefficient $a eq 0$ is rational. We show that there are infinite families of such equations, including those where
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.
Let $n$ be a positive integer and $f(x) := x^{2^n}+1$. In this paper, we study orders of primes dividing products of the form $P_{m,n}:=f(1)f(2)cdots f(m)$. We prove that if $m > max{10^{12},4^{n+1}}$, then there exists a prime divisor $p$ of $P_{m,n