ﻻ يوجد ملخص باللغة العربية
We briefly review the recent developments in neutrino physics and astrophysics which have import for frontline research in nuclear physics. These developments, we argue, tie nuclear physics to exciting developments in observational cosmology and astrophysics in new ways. Moreover, the behavior of neutrinos in dense matter is itself a fundamental problem in many-body quantum mechanics, in some ways akin to well-known issues in nuclear matter and nuclei, and in some ways radically different, especially because of nonlinearity and quantum de-coherence. The self-interacting neutrino gas is the only many body system driven by the weak interactions.
We review bounds on neutrino properties, in particular on their masses, coming mostly from cosmology, and also from astrophysics.
I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension
Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe t
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars
This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Iberico de Compstar, held at the University of Coimbra, Portugal in 201