ترغب بنشر مسار تعليمي؟ اضغط هنا

Morita equivalence for $k$-algebras

143   0   0.0 ( 0 )
 نشر من قبل Roger John Plymen
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review Morita equivalence for finite type $k$-algebras $A$ and also a weakening of Morita equivalence which we call stratified equivalence. The spectrum of $A$ is the set of equivalence classes of irreducible $A$-modules. For any finite type $k$-algebra $A$, the spectrum of $A$ is in bijection with the set of primitive ideals of $A$. The stratified equivalence relation preserves the spectrum of $A$ and also preserves the periodic cyclic homology of $A$. However, the stratified equivalence relation permits a tearing apart of strata in the primitive ideal space which is not allowed by Morita equivalence. A key example illustrating the distinction between Morita equivalence and stratified equivalence is provided by affine Hecke algebras associated to extended affine Weyl groups.



قيم البحث

اقرأ أيضاً

316 - Maysam Maysami Sadr 2019
We prove that for every group $G$ and any two sets $I,J$, the Brandt semigroup algebras $ell(B(I,G))$ and $ell(B(J,G))$ are Morita equivalent with respect to the Morita theory of self-induced Banach algebras introduced by Gronbaek. As applications, w e show that if $G$ is an amenable group, then for a wide class of Banach $ell(B(I,G))$-bimodules $E$, and every $n>0$, the bounded Hochschild cohomology groups $H^n(ell(B(I,G)),E^*)$ are trivial, and also, the notion of approximate amenability is not Morita invariant.
We study Morita equivalence and Morita duality for rings with local units. We extend the Auslanders results on the theory of Morita equivalence and the Azumaya-Morita duality theorem to rings with local units. As a consequence, we give a version of M orita theorem and Azumaya-Morita duality theorem over rings with local units in terms of their full subcategory of finitely generated projective unitary modules and full subcategory of finitely generated injective unitary modules.
We initiate the program of extending to higher-rank graphs ($k$-graphs) the geometric classification of directed graph $C^*$-algebras, as completed in the 2016 paper of Eilers, Restorff, Ruiz, and Sorensen [ERRS16]. To be precise, we identify four mo ves, or modifications, one can perform on a $k$-graph $Lambda$, which leave invariant the Morita equivalence class of its $C^*$-algebra $C^*(Lambda)$. These moves -- insplitting, delay, sink deletion, and reduction -- are inspired by the moves for directed graphs described by Sorensen [So13] and Bates-Pask [BP04]. Because of this, our perspective on $k$-graphs focuses on the underlying directed graph. We consequently include two new results, Theorem 2.3 and Lemma 2.9, about the relationship between a $k$-graph and its underlying directed graph.
Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well -known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.
106 - Shoumin Liu 2019
The Morita equivalences of classical Brauer algebras and classical Birman-Murakami-Wenzl algebras have been well studied. Here we study the Morita equivalence problems on these two kinds of algebras of simply-laced type, especially for them with the generic parameters. We show that Brauer algebras and Birman-Murakami-Wenzl algebras of simply-laced type are Morita equivalent to the direct sums of some group algebras of Coxeter groups and some Hecke algebras of some Coxeter groups, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا