ﻻ يوجد ملخص باللغة العربية
The Morita equivalences of classical Brauer algebras and classical Birman-Murakami-Wenzl algebras have been well studied. Here we study the Morita equivalence problems on these two kinds of algebras of simply-laced type, especially for them with the generic parameters. We show that Brauer algebras and Birman-Murakami-Wenzl algebras of simply-laced type are Morita equivalent to the direct sums of some group algebras of Coxeter groups and some Hecke algebras of some Coxeter groups, respectively.
It is known that the recently discovered representations of the Artin groups of type A_n, the braid groups, can be constructed via BMW algebras. We introduce similar algebras of type D_n and E_n which also lead to the newly found faithful representat
In this paper, we will define the Brauer algebras of Weyl types, and describe some propositions of these algebras. Especially, we prove the result of type $G_2$ to accomplish our project of Brauer algebras of non-simply laced types.
Let $U_q(mathfrak{g})$ be a quantum affine algebra with an indeterminate $q$ and let $mathscr{C}_{mathfrak{g}}$ be the category of finite-dimensional integrable $U_q(mathfrak{g})$-modules. We write $mathscr{C}_{mathfrak{g}}^0$ for the monoidal subcat
Hecke-Hopf algebras were defined by A. Berenstein and D. Kazhdan. We give an explicit presentation of an Hecke-Hopf algebra when the parameter $m_{ij},$ associated to any two distinct vertices $i$ and $j$ in the presentation of a Coxeter group, equal
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the thir