ﻻ يوجد ملخص باللغة العربية
High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter, purer and more indistinguishable single-photon production without any tight spectral filtering. The indistinguishability of heralded single-photons from multiple micro-ring resonators has not been measured in any photonic platform. Here, we report on-chip indistinguishability measurements of heralded single-photons generated from independent micro-ring resonators by using an on-chip Mach-Zehnder interferometer and spectral demultiplexer. We measured the raw heralded two-photon interference fringe visibility as 72 +/- 3%. This result agrees with our model, which includes device imperfections, spectral impurity and multi-pair emissions. We identify multi-pair emissions as the main factor limiting the nonclassical interference visibility, and show a route towards achieving near unity visibility in future experiments.
Large-scale integrated quantum photonic technologies will require the on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have already been demonstrated, but few studies acknowle
We demonstrate heralded single photon generation in a CMOS-compatible silicon nanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonator optical waveguide (CROW) produced a large four-wave-mixing nonline
We quantitatively investigate the non-classicality and non-locality of a whole new class of mixed disparate quantum and semiquantum photon sources at the quantum-classical boundary. The latter include photon added thermal and photon added coherent so
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum t
Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive m