ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularizing Model Complexity and Label Structure for Multi-Label Text Classification

73   0   0.0 ( 0 )
 نشر من قبل Cheng Li
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-label text classification is a popular machine learning task where each document is assigned with multiple relevant labels. This task is challenging due to high dimensional features and correlated labels. Multi-label text classifiers need to be carefully regularized to prevent the severe over-fitting in the high dimensional space, and also need to take into account label dependencies in order to make accurate predictions under uncertainty. We demonstrate significant and practical improvement by carefully regularizing the model complexity during training phase, and also regularizing the label search space during prediction phase. Specifically, we regularize the classifier training using Elastic-net (L1+L2) penalty for reducing model complexity/size, and employ early stopping to prevent overfitting. At prediction time, we apply support inference to restrict the search space to label sets encountered in the training set, and F-optimizer GFM to make optimal predictions for the F1 metric. We show that although support inference only provides density estimations on existing label combinations, when combined with GFM predictor, the algorithm can output unseen label combinations. Taken collectively, our experiments show state of the art results on many benchmark datasets. Beyond performance and practical contributions, we make some interesting observations. Contrary to the prior belief, which deems support inference as purely an approximate inference procedure, we show that support inference acts as a strong regularizer on the label prediction structure. It allows the classifier to take into account label dependencies during prediction even if the classifiers had not modeled any label dependencies during training.

قيم البحث

اقرأ أيضاً

One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.
109 - Han Liu , Caixia Yuan , 2020
A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.
Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless one-hot vecto rs, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we propose Multi-Task Label Embedding to convert labels in text classification into semantic vectors, thereby turning the original tasks into vector matching tasks. We implement unsupervised, supervised and semi-supervised models of Multi-Task Label Embedding, all utilizing semantic correlations among tasks and making it particularly convenient to scale and transfer as more tasks are involved. Extensive experiments on five benchmark datasets for text classification show that our models can effectively improve performances of related tasks with semantic representations of labels and additional information from each other.
We study an extreme scenario in multi-label learning where each training instance is endowed with a single one-bit label out of multiple labels. We formulate this problem as a non-trivial special case of one-bit rank-one matrix sensing and develop an efficient non-convex algorithm based on alternating power iteration. The proposed algorithm is able to recover the underlying low-rank matrix model with linear convergence. For a rank-$k$ model with $d_1$ features and $d_2$ classes, the proposed algorithm achieves $O(epsilon)$ recovery error after retrieving $O(k^{1.5}d_1 d_2/epsilon)$ one-bit labels within $O(kd)$ memory. Our bound is nearly optimal in the order of $O(1/epsilon)$. This significantly improves the state-of-the-art sampling complexity of one-bit multi-label learning. We perform experiments to verify our theory and evaluate the performance of the proposed algorithm.
103 - Hui Ye , Zhiyu Chen , Da-Han Wang 2020
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently release d generalized autoregressive pretrained model (XLNet) to learn a dense representation for the input text. We propose Adaptive Probabilistic Label Clusters (APLC) to approximate the cross entropy loss by exploiting the unbalanced label distribution to form clusters that explicitly reduce the computational time. Our experiments, carried out on five benchmark datasets, show that our approach has achieved new state-of-the-art results on four benchmark datasets. Our source code is available publicly at https://github.com/huiyegit/APLC_XLNet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا