ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial-Time Algorithms for Sliding Tokens on Cactus Graphs and Block Graphs

77   0   0.0 ( 0 )
 نشر من قبل Duc A. Hoang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given two independent sets $I, J$ of a graph $G$, and imagine that a token (coin) is placed at each vertex of $I$. The Sliding Token problem asks if one could transform $I$ to $J$ via a sequence of elementary steps, where each step requires sliding a token from one vertex to one of its neighbors so that the resulting set of vertices where tokens are placed remains independent. This problem is $mathsf{PSPACE}$-complete even for planar graphs of maximum degree $3$ and bounded-treewidth. In this paper, we show that Sliding Token can be solved efficiently for cactus graphs and block graphs, and give upper bounds on the length of a transformation sequence between any two independent sets of these graph classes. Our algorithms are designed based on two main observations. First, all structures that forbid the existence of a sequence of token slidings between $I$ and $J$, if exist, can be found in polynomial time. A sufficient condition for determining no-instances can be easily derived using this characterization. Second, without such forbidden structures, a sequence of token slidings between $I$ and $J$ does exist. In this case, one can indeed transform $I$ to $J$ (and vice versa) using a polynomial number of token-slides.



قيم البحث

اقرأ أيضاً

Suppose that we are given two independent sets $I_b$ and $I_r$ of a graph such that $|I_b|=|I_r|$, and imagine that a token is placed on each vertex in $I_b$. Then, the sliding token problem is to determine whether there exists a sequence of independ ent sets which transforms $I_b$ into $I_r$ so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs. In this paper, we thus study the problem restricted to trees, and give the following three results: (1) the decision problem is solvable in linear time; (2) for a yes-instance, we can find in quadratic time an actual sequence of independent sets between $I_b$ and $I_r$ whose length (i.e., the number of token-slides) is quadratic; and (3) there exists an infinite family of instances on paths for which any sequence requires quadratic length.
The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results we introduce a very useful $chi$-preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so-called skeletal graphs.
Bir{o} et al. (1992) introduced $H$-graphs, intersection graphs of connected subgraphs of a subdivision of a graph $H$. They are related to many classes of geometric intersection graphs, e.g., interval graphs, circular-arc graphs, split graphs, and c hordal graphs. We negatively answer the 25-year-old question of Bir{o} et al. which asks if $H$-graphs can be recognized in polynomial time, for a fixed graph $H$. We prove that it is NP-complete if $H$ contains the diamond graph as a minor. We provide a polynomial-time algorithm recognizing $T$-graphs, for each fixed tree $T$. When $T$ is a star $S_d$ of degree $d$, we have an $O(n^{3.5})$-time algorithm. We give FPT- and XP-time algorithms solving the minimum dominating set problem on $S_d$-graphs and $H$-graphs parametrized by $d$ and the size of $H$, respectively. The algorithm for $H$-graphs adapts to an XP-time algorithm for the independent set and the independent dominating set problems on $H$-graphs. If $H$ contains the double-triangle as a minor, we prove that $H$-graphs are GI-complete and that the clique problem is APX-hard. The clique problem can be solved in polynomial time if $H$ is a cactus graph. When a graph $G$ has a Helly $H$-representation, the clique problem can be solved in polynomial time. We show that both the $k$-clique and the list $k$-coloring problems are solvable in FPT-time on $H$-graphs (parameterized by $k$ and the treewidth of $H$). In fact, these results apply to classes of graphs with treewidth bounded by a function of the clique number. We observe that $H$-graphs have at most $n^{O(|H|)}$ minimal separators which allows us to apply the meta-algorithmic framework of Fomin et al. (2015) to show that for each fixed $t$, finding a maximum induced subgraph of treewidth $t$ can be done in polynomial time. When $H$ is a cactus, we improve the bound to $O(|H|n^2)$.
A graph is called $P_t$-free if it does not contain the path on $t$ vertices as an induced subgraph. Let $H$ be a multigraph with the property that any two distinct vertices share at most one common neighbour. We show that the generating function for (list) graph homomorphisms from $G$ to $H$ can be calculated in subexponential time $2^{Oleft(sqrt{tnlog(n)}right)}$ for $n=|V(G)|$ in the class of $P_t$-free graphs $G$. As a corollary, we show that the number of 3-colourings of a $P_t$-free graph $G$ can be found in subexponential time. On the other hand, no subexponential time algorithm exists for 4-colourability of $P_t$-free graphs assuming the Exponential Time Hypothesis. Along the way, we prove that $P_t$-free graphs have pathwidth that is linear in their maximum degree.
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum num ber of cographs (resp. threshold graphs) whose intersection gives $G$. We present several new bounds on these parameters for general graphs as well as some special classes of graphs. It is shown that for any graph $G$: (a) $mathrm{dim}_{COG}(G)leqmathrm{tw}(G)+2$, (b) $mathrm{dim}_{TH}(G)leqmathrm{pw}(G)+1$, and (c) $mathrm{dim}_{TH}(G)leqchi(G)cdotmathrm{box}(G)$, where $mathrm{tw}(G)$, $mathrm{pw}(G)$, $chi(G)$ and $mathrm{box}(G)$ denote respectively the treewidth, pathwidth, chromatic number and boxicity of the graph $G$. We also derive the exact values for these parameters for cycles and show that every forest is the intersection of two cographs. These results allow us to derive improved bounds on $mathrm{dim}_{COG}(G)$ and $mathrm{dim}_{TH}(G)$ when $G$ belongs to some special graph classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا