ترغب بنشر مسار تعليمي؟ اضغط هنا

Claw-free graphs, skeletal graphs, and a stronger conjecture on $omega$, $Delta$, and $chi$

181   0   0.0 ( 0 )
 نشر من قبل Andrew King
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The second authors $omega$, $Delta$, $chi$ conjecture proposes that every graph satisties $chi leq lceil frac 12 (Delta+1+omega)rceil$. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results we introduce a very useful $chi$-preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so-called skeletal graphs.



قيم البحث

اقرأ أيضاً

In 1998 the second author proved that there is an $epsilon>0$ such that every graph satisfies $chi leq lceil (1-epsilon)(Delta+1)+epsilonomegarceil$. The first author recently proved that any graph satisfying $omega > frac 23(Delta+1)$ contains a sta ble set intersecting every maximum clique. In this note we exploit the latter result to give a much shorter, simpler proof of the former. We include, as a certificate of simplicity, an appendix that proves all intermediate results with the exception of Halls Theorem, Brooks Theorem, the Lovasz Local Lemma, and Talagrands Inequality.
A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyc lic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring (the last problem is also known as $L(1,1)$-Labelling). A classical complexity result on Colouring is a well-known dichotomy for $H$-free graphs (a graph is $H$-free if it does not contain $H$ as an induced subgraph). In contrast, there is no systematic study into the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring despite numerous algorithmic and structural results that have appeared over the years. We perform such a study and give almost complete complexity classifications for Acyclic Colouring, Star Colouring and Injective Colouring on $H$-free graphs (for each of the problems, we have one open case). Moreover, we give full complexity classifications if the number of colours $k$ is fixed, that is, not part of the input. From our study it follows that for fixed $k$ the three problems behave in the same way, but this is no longer true if $k$ is part of the input. To obtain several of our results we prove stronger complexity results that in particular involve the girth of a graph and the class of line graphs of multigraphs.
Given two independent sets $I, J$ of a graph $G$, and imagine that a token (coin) is placed at each vertex of $I$. The Sliding Token problem asks if one could transform $I$ to $J$ via a sequence of elementary steps, where each step requires sliding a token from one vertex to one of its neighbors so that the resulting set of vertices where tokens are placed remains independent. This problem is $mathsf{PSPACE}$-complete even for planar graphs of maximum degree $3$ and bounded-treewidth. In this paper, we show that Sliding Token can be solved efficiently for cactus graphs and block graphs, and give upper bounds on the length of a transformation sequence between any two independent sets of these graph classes. Our algorithms are designed based on two main observations. First, all structures that forbid the existence of a sequence of token slidings between $I$ and $J$, if exist, can be found in polynomial time. A sufficient condition for determining no-instances can be easily derived using this characterization. Second, without such forbidden structures, a sequence of token slidings between $I$ and $J$ does exist. In this case, one can indeed transform $I$ to $J$ (and vice versa) using a polynomial number of token-slides.
This note resolves an open problem asked by Bezrukov in the open problem session of IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a sequence of invariants presents some symmetric property. We extend this result to a few other sequences.
This is the fifth in a series of articles devoted to showing that a typical covering map of large degree to a fixed, regular graph has its new adjacency eigenvalues within the bound conjectured by Alon for random regular graphs. In this article we use the results of Articles~III and IV in this series to prove that if the base graph is regular, then as the degree, $n$, of the covering map tends to infinity, some new adjacency eigenvalue has absolute value outside the Alon bound with probability bounded by $O(1/n)$. In addition, we give upper and lower bounds on this probability that are tight to within a multiplicative constant times the degree of the covering map. These bounds depend on two positive integers, the emph{algebraic power} (which can also be $+infty$) and the emph{tangle power} of the model of random covering map. We conjecture that the algebraic power of the models we study is always $+infty$, and in Article~VI we prove this when the base graph is regular and emph{Ramanujan}. When the algebraic power of the model is $+infty$, then the results in this article imply stronger results, such as (1) the upper and lower bounds mentioned above are matching to within a multiplicative constant, and (2) with probability smaller than any negative power of the degree, the some new eigenvalue fails to be within the Alon bound only if the covering map contains one of finitely many tangles as a subgraph (and this event has low probability).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا