ﻻ يوجد ملخص باللغة العربية
The charge asymmetry due to higher-order QED corrections in elastic lepton-proton scattering is estimated without employing the ultrarelativistic approximation. Our calculation is performed by generalizing the soft-photon approximation approach suggested by Tsai. Corresponding loop integrals that take a form of Passarino-Veltman scalar three-point functions are calculated analytically without neglecting the mass of the lepton. Our results provide model-independent charge asymmetry predictions for scattering of unpolarized and massive leptons on proton targets. These predictions can be used in corresponding experiments to determine the contribution coming from model-dependent hard two-photon exchange processes.
This paper describes a new multipurpose event generator, ESEPP, which has been developed for the Monte Carlo simulation of unpolarized elastic scattering of charged leptons on protons. The generator takes into account the lowest-order QED radiative c
The event rates for WIMP-nucleus and neutrino-nucleus scattering processes, expected to be detected in ton-scale rare-event detectors, are investigated. We focus on nuclear isotopes that correspond to the target nuclei of current and future experimen
It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of the proton charge radius. Very small values of transferred momenta (up to four order of magnitude smaller than the ones presently available) can be reached with high probability.
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $sim A/Z$ with the atomic
We analyze the parity-violating (PV) components of the analyzing power in elastic electron-proton scattering and discuss their sensitivity to the strange quark contributions to the proton weak form factors. We point out that the component of the anal