ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications

140   0   0.0 ( 0 )
 نشر من قبل Jonathan Brodrick
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-Planck (VFP) codes to assess their accuracy in situations relevant to both inertial fusion hohlraums and tokamak scrape-off layers. The models tested are (i) a moment-based approach using an eigenvector integral closure (EIC) originally developed by Ji, Held and Sovinec; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits, Joseph and Umansky; and (iii) Schurtz, Nicolai and Busquets multigroup diffusion model (SNB). We find that while the EIC and NFLF models accurately predict the damping rate of a small-amplitude temperature perturbation (within 10% at moderate collisionalities), they overestimate the peak heat flow by as much as 35% and do not predict preheat in the more relevant case where there is a large temperature difference. The SNB model, however, agrees better with VFP results for the latter problem if care is taken with the definition of the mean free path. Additionally, we present for the first time a comparison of the SNB model against a VFP code for a hohlraum-relevant problem with inhomogeneous ionisation and show that the model overestimates the heat flow in the helium gas-fill by a factor of ~2 despite predicting the peak heat flux to within 16%.

قيم البحث

اقرأ أيضاً

The interaction of lasers with plasmas very often leads to nonlocal transport conditions, where the classical hydrodynamic model fails to describe important microscopic physics related to highly mobile particles. In this study we analyze and further propose a modification of the Albritton- Williams-Bernstein-Swartz collision operator Phys. Rev. Lett 57, 1887 (1986) for the nonlocal electron transport under conditions relevant to ICF. The electron distribution function provided by this modification exhibits some very desirable properties when compared to the full Fokker- Planck operator in the local diffusive regime, and also performs very well when benchmarked against Vlasov-Fokker-Planck and collisional PIC codes in the nonlocal transport regime, where we find that the effect of the electric field via the nonlocal Ohms law is an essential ingredient in order to capture the electron kinetics properly.
Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Confined Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.
Engineering features are known to cause jets of ablator material to enter the fuel hot-spot in inertial confinement fusion implosions. The Biermann battery mechanism wraps them in self-generated magnetic field. We show that higher-Z jets have an addi tional thermoelectric magnetic source term that is not present for hydrogen jets, verified here through a kinetic simulation. It has similar magnitude to the Biermann term. We then include this in an extended magneto-hydrodynamics approach to post-process an xRAGE radiation-hydrodynamic implosion simulation. The simulation includes an accurate model for the capsule fill tube, producing a dense carbon jet that becomes wrapped in a 4000T magnetic field. A simple spherical carbon mix model shows that this insulates the electron heat conduction enough to cause contraction of the jet to an optically thick equilibrium. The denser magnetized jet hydrodynamics could change its core penetration and therefore the final mix mass, which is known to be well correlated with fusion yield degradation. Fully exploring this will require self-consistent magneto-hydrodynamic simulations. Experimental signatures of this self-magnetization may emerge in the high energy neutron spectrum.
113 - S. C. Hsu , T. R. Joshi , P. Hakel 2016
We report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D$_2$/Ar gas fill (1% Ar by atom), were de signed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock.
87 - X. T. He , Z. F. Fan , J. W. Li 2015
An indirect-direct hybrid-drive work-dominated hotspot ignition scheme for inertial confinement fusion is proposed: a layered fuel capsule inside a spherical hohlraum with an octahedral symmetry is compressed first by indirect-drive soft-x rays (radi ation) and then by direct-drive lasers in last pulse duration. In this scheme, an enhanced shock and a follow-up compression wave for ignition with pressure far greater than the radiation ablation pressure are driven by the direct-drive lasers, and provide large pdV work to the hotspot to perform the work-dominated ignition. The numerical simulations show that the enhanced shock stops the reflections of indirect-drive shock at the main fuel-hotspot interface, and therefore significantly suppresses the hydrodynamic instabilities and asymmetry. Based on the indirect-drive implosion dynamics the hotspot is further compressed and heated by the enhanced shock and follow-up compression wave, resulting in the work-dominated hotspot ignition and burn with a maximal implosion velocity of ~400 km/s and a lower convergence ratio of ~25. The fusion yield of 15 MJ using total laser energy of 1.32 MJ is achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا