ﻻ يوجد ملخص باللغة العربية
When considering binary strings, its natural to wonder how many distinct subsequences might exist in a given string. Given that there is an existing algorithm which provides a straightforward way to compute the number of distinct subsequences in a fixed string, we might next be interested in the expected number of distinct subsequences in random strings. This expected value is already known for random binary strings where each letter in the string is, independently, equally likely to be a 1 or a 0. We generalize this result to random strings where the letter 1 appears independently with probability $alpha in [0,1]$. Also, we make some progress in the case of random strings from an arbitrary alphabet as well as when the string is generated by a two-state Markov chain.
We determine the average number of distinct subsequences in a random binary string, and derive an estimate for the average number of distinct subsequences of a particular length.
Let $pi_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, we show that the expected number of distinct consecutive patterns in $pi_n$ is
We revisit staircases for words and prove several exact as well as asymptotic results for longest left-most staircase subsequences and subwords and staircase separation number, the latter being defined as the number of consecutive maximal staircase s
There exists a significant body of work on determining the acquisition number $a_t(G)$ of various graphs when the vertices of those graphs are each initially assigned a unit weight. We determine properties of the acquisition number of the path, star,
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seym