ﻻ يوجد ملخص باللغة العربية
In electronic structure methods based on the correction of approximate density-functional theory (DFT) for systematic inaccuracies, Hubbard $U$ parameters may be used to quantify and amend the self-interaction errors ascribed to selected subspaces. Here, in order to enable the accurate, computationally convenient calculation of $U$ by means of DFT algorithms that locate the ground-state by direct total-energy minimization, we introduce a reformulation of the successful linear-response method for $U$ in terms of the fully-relaxed constrained ground-state density. Defining $U$ as an implicit functional of the ground-state density implies the comparability of DFT + Hubbard $U$ (DFT+$U$) total-energies, and related properties, as external parameters such as ionic positions are varied together with their corresponding first-principles $U$ values. Our approach provides a framework in which to address the partially unresolved question of self-consistency over $U$, for which plausible schemes have been proposed, and to precisely define the energy associated with subspace many-body self-interaction error. We demonstrate that DFT+$U$ precisely corrects the total energy for self-interaction error under ideal conditions, but only if a simple self-consistency condition is applied. Such parameters also promote to first-principles a recently proposed DFT+$U$ based method for enforcing Koopmans theorem.
While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to which extent it can describe metal-insulator transitions in real solids, where non-local Coulomb interactions are always present. By using
Bound-state (BS) formation in quantum point contacts (QPCs) may offer a convenient way to localize and probe single spins. In this letter, we investigate how such BSs are affected by monitoring them with a second QPC, which is coupled to the BS via w
Phonon lifetime calculations from first principles usually rely on time consuming molecular dynamics calculations, or density functional perturbation theory (DFPT) where the zero temperature crystal structure is assumed to be dynamically stable. Here
We present a self-consistent analysis of the photoemission spectral function A(k, w) of graphene monolayers grown epitaxially on SiC(0001). New information derived from spectral intensity anomalies (in addition to linewidths and peak positions) confi
We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. T