ﻻ يوجد ملخص باللغة العربية
Bound-state (BS) formation in quantum point contacts (QPCs) may offer a convenient way to localize and probe single spins. In this letter, we investigate how such BSs are affected by monitoring them with a second QPC, which is coupled to the BS via wavefunction overlap. We show that this coupling leads to a unique detector backaction, in which the BS is weakened by increasing its proximity to the detector. We also show, however, that this interaction between the QPCs can be regulated at will, by using an additional gate to control their wavefunction overlap.
Using an approach that allows us to probe the electronic structure of strongly pinched-off quantum point contacts (QPCs), we provide evidence for the formation of self-consistently realized bound states (BSs) in these structures. Our approach exploit
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor
We develop a master equation approach to study the backaction of quantum point contact (QPC) on a double quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only when the bias voltage across the QPC exce
In electronic structure methods based on the correction of approximate density-functional theory (DFT) for systematic inaccuracies, Hubbard $U$ parameters may be used to quantify and amend the self-interaction errors ascribed to selected subspaces. H
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a