ﻻ يوجد ملخص باللغة العربية
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically-doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field $B_{rm{ex}}$ on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd$_{1-x}$Mn$_x$Se nanocrystals. Despite small Mn$^{2+}$ concentrations ($x$=0.4-1.6%), large polaron binding energies up to $sim$26~meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn$^{2+}$ spins by $B_{rm{ex}}$. Temperature and magnetic field-dependent studies reveal that $B_{rm{ex}} approx$ 10~T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission linewidths provide direct insight into the statistical fluctuations of the Mn$^{2+}$ spins. These resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly-doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.
We study the low-temperature magneto-photoluminescence (PL) from individual CdSe nanocrystals. Nanocrystals having a small bright exciton fine structure splitting ($<$0.5 meV) exhibit a conventional left- and right-circularly polarized Zeeman PL doub
Design, epitaxial growth, and resonant spectroscopy of CdSe Quantum Dots (QDs) embedded in an innovative (Zn,Cd)Se barrier are presented. The (Zn,Cd)Se barrier enables shifting of QDs energy emission down to 1.87 eV, that is below the energy of Mn$^{
We use neutron reflectometry to investigate the interlayer exchange coupling between Ga$_{0.97}$Mn$_{0.03}$As ferromagnetic semiconductor layers separated by non-magnetic Be-doped GaAs spacers. Polarized neutron reflectivity measured below the Curie
We study the dependence of the quantum yield of photoluminescence of a dense, periodic array of semiconductor nanocrystals (NCs) on the level of doping and NC size. Electrons introduced to NCs via doping quench photoluminescence by the Auger process,
We present studies of the cyclotron resonance (CR) in thick Cd$_x$Hg$_{1-x}$Te films with different cadmium concentrations corresponding to inverted and normal band order, as well as to an almost linear energy dispersion. Our results demonstrate that